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ABSTRACT
Image de-noising and enhancement form two fundamental
problems in many engineering and biomedical applications.
The paper is devoted to the study of the multi-resolution ap-
proach to this topic employing the Haar wavelet transform
and its application to processing of volumetric magnetic reso-
nance image sets corrupted with additional noise. The result-
ing coefficients are thresholded and exploited for subsequent
reconstruction. The Haar transform is evaluated using both
the two-dimensional approach applied individually to each
image layer, and the three-dimensional technique performed
on the image volume as a whole. In noise reduction, the latter
approach profits from similarities between the neighbouring
image layers and shows a considerable improvement over the
former method. Results are presented in numerical and graph-
ical forms using three-dimensional visualization tools.

Index Terms— Wavelet transform, image decomposition
and reconstruction, Haar transform, de-noising, biomedical
image processing

1. INTRODUCTION

Fundamental problems encountered in digital processing of
both one-dimensional and multi-dimensional signals include
rejection of their undesirable parts [1, 2], feature extraction,
classification and restoration of their missing or corrupted com-
ponents. Multi-resolution approach related to wavelet trans-
form [3, 4, 5] is used in many cases to simplify these pro-
cesses and to improve their robustness. Image resolution en-
hancement [6, 7] and volumetric reconstruction [8, 9] form
further problems related to these topics.

Biomedical image processing represents an extensive area
based upon theoretical principles of multi-dimensional pro-
cessing methods. Related problems include multirate analy-
sis, processing and coding of biomedical images [10, 11].

The paper is devoted to the use of the wavelet transform
and multi-resolution decomposition of biomedical image vol-
umes to improve results of the de-noising process applied sep-
arately to each image layer of the body. In the initial part of
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the paper, the Haar transform computation algorithm is pro-
posed starting with 1-D signal and proceeding to 2-D images
and 3-D image sets.

The proposed method is applied to multi-layer magnetic
resonance (MR) biomedical images. An example of the bio-
medical structures studied further is presented in Fig. 1. Af-
ter noise addition, these multi-layer images are processed by
both 2-D and 3-D Haar transform involving the coefficients
thresholding procedure. This approach is closely related to
many possibilities of the use of wavelet transform in magnetic
resonance imaging studied by many authors [12, 13].

Fig. 1. Real data standing for (a) a selected spinal MR image
and (b) four chosen slices of the MR data set (number 3]

2. HAAR TRANSFORM IN SIGNAL ANALYSIS

The Haar transform stands for the simplest algorithm enabling
signal or image compression [14].

Let us have a signal {x(n)}N
n=1. Each pair of its subse-

quent values {x(n), x(n + 1)} for n = 1, 3, · · · , N can then
be decomposed into two values(
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using orthogonal decomposition matrix
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Resulting sequence {X1,X3, · · · ,XN−1} defines the low-
pass decomposition values with its length halved in compar-
ison with the original sequence. The complementary high-
pass sequence is composed of values {X2,X4, · · · ,XN} in
the same way.

A similar principle can be applied to the analysis of an im-
age [g(n,m)]N,M taking into account that a one-dimensional
signal can be considered as a special case of an image having
one column only. The elementary decomposition element is a
2 x 2 matrix (

gn,m gn,m+1

gn+1,m gn+1,m+1

)
(3)

where n = 1, 3, · · · , N − 1 and m = 1, 3, · · · ,M − 1. Each
such submatrix is decomposed column-wise at first(
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and then row-wise using relation(
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In this manner, the first level of the decomposition procedure
is completed. The resulting matrix elements may be rear-
ranged to define four submatrices. The low/low-pass subma-
trix is defined hereby⎛

⎜⎜⎝
G1,1 G1,3 · · · G1,M−1

G3,1 G3,3 · · · G3,M−1

· · ·
GN−1,1 GN−1,3 · · · GN−1,M−1

⎞
⎟⎟⎠ (6)

This matrix having the half number of rows and columns com-
paring to the original one can be used for the next level of de-
composition. The results of the 2-D Haar decomposition of a
spinal MR image into the first level are presented in Fig. 2.

In a similar way, it is possible to decompose the body con-
sisting of layers of images. The mathematical principle [14,
15] is based upon the generalization of the previous method
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Fig. 2. Haar decomposition of a selected MR image with the
additional random presenting (a) results of single level image
decomposition, (b) the approximation decomposition coeffi-
cients, and (c) the detail decomposition coefficients

adding another axis in the layer direction. In other words,
pixels of the outcome of 2-D transform of all image layers,
which have the corresponding x,y-location, are treated as 1-D
signals. The 3-D decomposition of a spinal MR image vol-
ume using the Haar decomposition matrix is shown in Fig. 3.
Further possibilities include application of complex wavelet
functions [16].

Fig. 3. Decomposition of the set of MR images presenting
(a) 2-D (slice-by-slice) Haar wavelet decomposition (b) 3-D
(volumetric) Haar wavelet decomposition

3. OPTIMAL THRESHOLD SELECTION FOR
IMAGE DE-NOISING

Image de-nosing can be achieved by appropriate threshold-
ing of wavelet coefficients. In the case of soft-thresholding
it is possible to evaluate new coefficients c(k) using original
coefficients c(k) for a chosen threshold value δ by relation

c(k)=
{

sign c(k) (|c(k) | −δ) if |c(k) |> δ
0 if |c(k) |≤ δ

(7)

This approach can be exploited for both signals and images
using different methods of threshold level estimation. Fig. 4(a)
presents the results of a selected numerical experiment of a
single layer de-noising showing the dependence of the mean
square error (MSE) on the threshold limit ranging from zero
to the maximal value of the absolute detail decomposition co-
efficients. In this way, the optimal value of threshold level is
found for each image layer. In the case of 3-D decomposi-
tion, a single threshold value is estimated for the whole vol-
ume. Results of the 2-D de-nosing of the selected MR image
using global thresholding and the optimal threshold value are
presented in Figs 4(b), (c) and (d).

4. MULTIDIMENSIONAL OBJECT DE-NOISING

Signal de-noising procedure applied in two dimensions can
further be generalized to three dimensions. The study of the
extend to which spatial information can improve the result of
image de-noising forms the main part of the following work.



Table 1. MRI DATA SETS SPECIFICATIONS

MRI
Set

Data Type
Pixel
Spacing
[mm]

Slice
Spacing
[mm]

Block
Size

1 Spine - Sagittal 0.4687 4 512x512x12
2 Spine - Axial 0.3906 4 512x512x26
3 Cut of Set 1 0.4687 4 256x256x12
4 Cut of Set 2 0.3906 4 256x256x26
5 Brain - Axial 0.4688 1 256x256x12

The research is devoted to the problem of noise rejection
in real MR images. Table 1 summarizes specifications of MR
data sets used in this study presenting different biomedical
structures. Fig. 1 shows parts of the set number 3 composed
of 12 layers with resolution of 256 x 256 pixels.

Fig. 5 shows the results achieved for selected sets of MR
images. The additional random noise was rejected using both
2-D and 3-D Haar decomposition and thresholding of the re-
sulting coefficients.

Numerical results are summarized in Table 2 for five se-
lected MR sets. The mean square error between the origi-
nal image volume and the de-noised one is normalised to the
number of pixels in each image set. For each of the five sets
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Fig. 4. Processing of the spinal MR image (number 3) pre-
senting (a) the effect of threshold selection on the mean
square error (MSE) value, (b) original image, (c) image with
additional random noise, and (d) de-noised image using the
optimal threshold value

 (a) MRI SET 3, IMAGE 3: NOISY IMAGE, 2D DENOISING,3D DENOISING

 (b) MRI SET 4, IMAGE 3: NOISY IMAGE, 2D DENOISING, 3D DENOISING

 (c) MRI SET 5, IMAGE 3: NOISY IMAGE, 2D DENOISING, 3D DENOISING

Fig. 5. MR image de-noising by thresholding the 2D and 3D
Haar coefficients for (a) image number 3 of MRI set 3 (sagit-
tal spine), (c) image number 3 of MRI set 4 (axial spine), and
(c) image number 3 of MRI set 5 (axial brain)

of data, we carried out ten 2-D and ten 3-D de-noising exper-
iments, each time with a different random noise component.
Table 2 displays the average MSE, its variance and its per-
centage improvement attained by de-noising. Both numerical
results and their visualization presented in Fig. 5 verify that
the 3-D approach to image processing can highly improve re-
sults achieved by the de-noising of individual layers.

Another set of numerical experiments have been done with
a specific noise component related to the random noise re-
stricted to the higher spectral components in the frequency
domain only. Accomplishing the same set of experiments
with this high frequency band noise, much better results were
achieved for both de-noising methods. The overall average
improvement was 74.2% for the 2-D de-noising and 87.2%
for the 3-D de-noising. In this case, the advantages of the
volumetric approach were not revealed in the full scale.

However, in the case of random noise, the layer-by-layer
technique proves insufficient in comparison with the volumet-
ric one. The percentage decrease of the random noise compo-
nents summarised in Table 2 points out the substantial effect
of the 3-D approach. While the overall average improvement



Table 2. COMPARISON OF THE DE-NOISING RESULTS FOR
THE 2-D AND 3-D HAAR TRANSFORM

Method / Measure
MRI Set

1 2 3 4 5
MSE [E-02] 2.69 2.27 1.81 1.77 1.97

2D Variance [E-07] 8.25 3.39 14.9 2.68 13.0
Improvement [%] 17.9 24.0 26.8 33.4 24.9
MSE [E-02] 1.56 0.91 1.14 0.72 0.62

3D Variance [E-07] 13.8 1.10 5.40 0.71 1.91
Improvement [%] 52.5 69.6 53.9 73.0 76.2

was 25.5% for the single layer processing, it was possible to
achieve the improvement of 65.0% by the 3-D decomposition
and de-noising approach.

5. CONCLUSION

It is possible to summarize that the 3-D image de-noising can
significantly improve results achieved in the case of process-
ing of individual images. The results presented in Table 2
summarize numerical experiments for real MR biomedical
bodies using the Haar volumeric decomposition enabling also
very simple reconstruction of the three-dimensional body.

Further studies will be devoted to the application of spe-
cific wavelet functions for volumetric enhancement of biome-
dical structures. The purpose of such a study is in the de-
tection of image components and in visualization of general
slices of the 3-D structures.
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