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Image de-noising and enhancement form two fundamental problems in many engi-
neering and biomedical applications. The paper is devoted to the study of the multi-
resolution approach to this topic employing the Haar wavelet transform and its ap-
plication to processing of volumetric magnetic resonance image sets corrupted with
additional noise. The resulting coefficients are thresholded and exploited for subse-
quent reconstruction. The Haar transform is evaluated using both a two-dimensional
approach applied individually to each image layer, and a three-dimensional tech-
nique performed on the image volume as a whole. In noise reduction, the latter ap-
proach profits from similarities between the neighbouring image layers and shows a
considerable improvement over the former method. As an alternative to the wavelet
transform, we also employ the Fourier transform for noise reduction by the means
of spectral subtraction. The results are presented in numerical and graphical forms
using three-dimensional visualization tools.

Abstract

Fundamental problems of image processing:

❖ Rejection of undesirable parts [8,10]

❖ Feature extraction and classification

❖ Restoration of missing or corrupted components

❖ Image resolution enhancement [1], processing and coding [5]

The Haar transform (HT):

❖ The discrete wavelet transform [2,7] using the Haar function

❖ In this paper - de-noising of biomedical magnetic resonance (MR) images by
thresholding of their coefficients

❖ Image set decomposition:

• Whole image volume (3-dimensional HT) [6]
• Slice-by-slice (2-dimensional HT)

Introduction

Fig. 1. Real data standing for (a) a selected spinal MR image, (b) the image volume
of MR data set no. 3, and (c) four chosen slices of this data set

The Haar transform is the simplest compression algorithm [4].

Let us have a signal {x(n)}N
n=1. Each couple of its subsequent values {x(n),x(n+1)}

for n = 1,3, . . . ,N −1 and N even can be decomposed into two values(
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{X1,X3, . . . ,XN−1} . . . the low-pass decomposition sequence
{X2,X4, . . . ,XN} . . . the complementary high-pass sequence

This may be also expressed as:
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HT in Signal Analysis

Let us have an image [g(n,m)]N,M. For n = 1,3, · · · ,N −1, m = 1,3, · · · ,M−1, and N,
M even, each elementary decomposition element may be decomposed
1. column-wise (

G1n,m G1n,m+1
G1n+1,m G1n+1,m+1

)
= T

(
gn,m gn,m+1

gn+1,m gn+1,m+1

)
(3)

2. row-wise to produce the decomposition matrix G:(
Gn,m Gn,m+1

Gn+1,m Gn+1,m+1

)
=

(
G1n,m G1n,m+1

G1n+1,m G1n+1,m+1

)
TT (4)

The elements of G may be rearranged to define four submatrices. The low/low-pass
submatrix defined hereby can be used for the next level of decomposition.⎛

⎜⎜⎝
G1,1 G1,3 · · · G1,M−1
G3,1 G3,3 · · · G3,M−1

· · ·
GN−1,1 GN−1,3 · · · GN−1,M−1

⎞
⎟⎟⎠ (5)

HT in Image Analysis
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Fig. 2. MR image enhancement by thresholding of the HT coefficients displaying
(a) the two-dimensional subband coding scheme, (b) the MR image with additional
noise, (c) one-level HT decomposition, (d) the reconstructed image, (e) the decom-
position coefficients, and (f) the thresholded coefficients utilized for reconstruction

The 3-D HT is computed by adding another axis in the layer direction. That means
that the outcomes of the 2-D transform of the image layers with a corresponding
x,y-location are decomposed in the between-slice direction in the same way as 1-D
signals [3,4].

Fig. 3. Decomposition of the MR image volume presenting (a) 2-D slice-by-slice
Haar wavelet decomposition (b) 3-D volumetric Haar wavelet decomposition

HT in Volume Analysis

Soft-thresholding:

❖ Image de-nosing by thresholding of the HT coefficients

❖ The thresholded coefficients c(k):

c(k) =
{

sign c(k) (|c(k) | −δ ) if |c(k) |> δ
0 if | c(k) |≤ δ (6)

where c(k) are the original coefficients and δ is the threshold limit

Threshold level estimation:

❖ The interval of threshold values: between the minimum and the maximum of the
absolute value of the detail decomposition coefficients

❖ The optimal threshold value - the highest PSNR of the reconstructed image

❖ The peak signal to noise ratio (PSNR) in decibels (dB):

PSNR = 20 · log10

(
max{g(n,m)}√

MSE

)
(7)

max{gn,m} . . . the maximum pixel value of the image g(n,m)
MSE . . . the mean square error between the original and the de-noised image
volume, normalized to the number of pixels

❖ 2-D de-nosing: different threshold limit for each image layer

❖ 3-D de-nosing: a single threshold value for the whole volume

Threshold Selection
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Fig. 4. 2-D processing of spinal MR image number 3 presenting (a) the image with
additional high frequency band noise, (b) one-level HT decomposition, (c) the de-
noised image reconstructed from the coefficients altered by the optimal threshold
value, (d) the effect of threshold limit selection on the PSNR measure in decibels,
and (e) the HT coefficients of the noisy image and the threshold levels interval

The following study is devoted to the problem of noise rejection in real MR images
outlined in Table 1. For illustration, Fig. 1 shows set 3 composed of 12 layers with
the resolution of 256 x 256 pixels.

Table 1. MRI DATA SETS SPECIFICATIONS

MRI Set Data Type Pixel Spacing
[mm]

Slice Spacing
[mm] Block Size [mm]

1 Spine - Sagittal 0.4687 4 512 x 512 x 12
2 Spine - Axial 0.3906 4 512 x 512 x 26
3 Cut of Set 1 0.4687 4 256 x 256 x 12
4 Cut of Set 2 0.3906 4 256 x 256 x 26
5 Brain - Axial 0.4688 1 256 x 256 x 12

Data Specification

Experiment specification:

❖ Ten 2-D and ten 3-D de-noising experiments for each of the five sets of MR data

❖ Each time with a different additional noise component

Experiment 1:

❖ High frequency band noise: random noise with its low frequency spectral com-
ponents removed in the frequency domain

❖ The overall average improvement of the PSNR:

• 2-D approach: 35.5%, 3-D approach: 54.4%

Experiment 2:

❖ Random noise

❖ The overall average improvement of the PSNR:

• 2-D approach: 8.3%, 3-D approach: 30.5%

Results:

❖ The space information improves the de-noising results (see Fig. 5)

❖ For random noise - the layer-by-layer technique proves insufficient

Table 2. COMPARISON OF THE DE-NOISING RESULTS FOR THE 2-D AND 3-D HAAR
TRANSFORM FOR RANDOM NOISE

Method / Measure MRI Set

1 2 3 4 5
2D Mean PSNR [dB] 15.7 16.4 17.4 17.5 17.1

Improvement [%] 5.8 7.8 8.5 11.4 7.9
3D Mean PSNR [dB] 18.1 20.4 19.4 21.4 22.1

Improvement [%] 21.9 33.9 21.0 36.1 39.5

Results of MR Volumes De-Noising

 (a) MRI SET 3, IMAGE 3: NOISY IMAGE, 2D DENOISING,3D DENOISING

 (b) MRI SET 4, IMAGE 3: NOISY IMAGE, 2D DENOISING, 3D DENOISING

 (c) MRI SET 5, IMAGE 3: NOISY IMAGE, 2D DENOISING, 3D DENOISING

Fig. 5. Additional random noise reduction by thresholding of the 2D and 3D Haar
coefficients for (a) image number 3 of MRI set 3 (sagittal spine), (b) image number
3 of MRI set 4 (axial spine), and (c) image number 3 of MRI set 5 (axial brain)

Spectral subtraction procedure:

1. One image cut and four background cuts (see Fig. 6)

2. Noise: the inverse Fourier transform (FT) of the average computed from the FTs
of the background cuts

3. Noise addition in the time domain:
xn,m = gn,m +dn,m (8)

where n,m are discrete time idices, g is the original image cut, d is distortion,
and x is the resulting noisy cut

4. In the frequency domain for frequency indices k, l:

Xk,l = Gk,l +Dk,l (9)

5. Spectral subtraction [9]:

Ĝk,l =
{

(|Xk,l|−α |D̂k,l|) e j arg{Xk,l} for α |D̂k,l| ≤ |Xk,l|
0 otherwise

(10)

where D̂k,l and Ĝk,l are the spectral estimates of noise and the recovered image,
resp.

6. Optimation of α - the maximum of the signal to noise ratio (SNR) (see Fig. 7):

SNR = 10 · log10

(
var[g(n,m)− x(n,m)]
var[g(n,m)− ĝ(n,m)]

)
(11)

where ĝ stands for the de-noised image

Spectral Subtraction

 (a) BRAIN MR IMAGE  (b) IMAGE CUT  (c) BACKGROUND CUT

Fig. 6. Brain MR image cuts representing (a) axial plane brain MR image number 0,
(b) a cut containing image information, and (c) one of the background cuts without
any useful information
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Fig. 7. Optimation of α displaying (a) dependence of the SNR [dB] on the value of
α and (b) the magnitude Fourier spectrum of additional noise

 (a) NOISY IMAGE CUT  (b) SPEC. SUBTRACTION  (c) DIFFERENCE IMAGE

Fig. 8. Spectral subtraction standing for (a) the noisy image, (b) the image after
spectral subtraction, and (c) the residual image enhanced for visual presentation

It is possible to conclude that the 3-D image de-noising can significantly improve
results achieved by processing of individual images. Results presented in Table 2
summarize numerical experiments for real MR biomedical bodies using the Haar
volumeric decomposition enabling also very simple reconstruction of the three-
dimensional body.
As an alternative method of image de-noising, we present the Fourier transform
utilised in spectral subtraction of magnitude spectra.
Our further studies will be devoted to the application of specific wavelet functions
for volumetric enhancement of biomedical structures. The purpose of such a study
is in the detection of image components and in visualization of general slices of the
3-D structures.
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