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Abstract

This paper presents the use of the sliding window techniqueekture
feature extraction in order to identify regions of intergstmicroscopic
Images of aluminium alloys. Our goal is to automate expentaecval-
uation of high-temperature sustainability of such allofsarious com-
position. The study includes the comparison of selectetlifeaextrac-
tion methods within the space, frequency and space-scat@ids using
namely space-based statistics, the discrete Fourierftram$DFT), and
the discrete wavelet transform (DWT) for features compomatl he com-
pactness of feature clusters is evaluated exploiting aszchimsmerical cri-
terion to determine the most suitable way of features coatjmut and to
compare the resulting features from the three differentalos For real
Images, the clusters compactness can often be improvecapyguessing
methods such as smoothing. In this paper, we employ mediantd and
wavelet shrinkage and observe their effect on the results.

1. Introduction

Aluminium alloys (Al-Cr-Fe-Ti-Ce)

» Favorable properties: low densky widely used in the automotive ang
aerospace industries.

» Usage limitation: high-temperature resistance only upO@ @

» With an optimal admixture of cerium (Ce), the alloy obtairdfast
cooling sustains temperatures up to 400

» The degree of high-temperature resistance is observedwakau alloy
samples of different Ce content using the electronic mawps. (To
a certain point, homogeneous texture becomes coarser.)

Project goal

» Detect the homogeneous and the coarser-texture areasaintorauto-
matically evaluate the degree of temperature degradation.

(a) IMAGE 1

(b) IMAGE 2
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3. Smoothing

Two chosen smoothing methods
» Median filtering (convolution with a X7 mask)

» Wavelet shrinkage (2 levels, bior4.4 wavelet)
The wavelet shrinkage algorithm
» Additional noise model of a noisy wavelet coefficient obsdion
w(k) = y(k) +n(k) (1)
wherey(k) andn(k) correspond to the wavelet coefficients of a noi
free signal and iid Gaussian noise, resp. kKetO,1,... . N—1.

» MAD estimate of the standard deviation for 1id Gaussian ®&ois

6 = median( [Wi(0)[, W4(1)],..., wWi(N1—~1)[) / 0.6745  (2)

where{w{ (k) }=; are the diagonal wavelet coefficients of level 1
» Global penalized threshofilby Birge-Massart [4] is computed by min
Imizing the criterion

crit(t) = —

t

Y w(k)*+26”t (a+logN /1) (3)
k=0

wherea € {R > 1} is a tuning parameter for the penalty term (in t

http://dsp.vscht.cz/

(b) SEGMENTED IMAGE 2
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(c) SEGMENTED IMAGE 1

Fig. 5 Segmentation results for two different alloy samples usa)ghe
frequency-based features extracted from image 1 smoothededian
filtering,(b) the space-based features from image 2 without smoot
(c) the wavelet-based features from image 1 without smootland(d)
the space-based features from image 2 smoothed by wavalstagipe

work a = 1.5) and{w(k) }\; are the wavelet coefficients sorted in d
creasing order of their absolute value. Fominimizing the criterion,
the threshold value is given By= |w(t*)|.

» Soft thresholding to estimate values of the wavelet coeffisy(k) of
the noise-free signal

; signw(k)} - (Jw(k)| —0) for |w(k)|> o
Vk) = { 0 otherwise

(4)
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and(b) wavelet shrinkage
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(a) CLASSIFICATION FOR IMAGE 1, CSC=0.58
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(b) CLASSIFICATION FOR IMAGE 2, CSC=0.62
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(c) CLASSIFICATION FOR IMAGE 1, CSC= 0.57 (d) CLASSIFICATION FOR IMAGE 2, CSC=0.58
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Fig. 6 Clustering and classification of computed features comesimg
to the segmentation results in Fig. 5 in respective orderiagdding
evaluation by th€3C criterion

(c) IMAGE 3

(d) IMAGE 4

Fig. 1. Microscopic images of aluminium alloys samples with arehs
coarser texture caused by annealing (image histogramsjaatized)

2. Texture Features Extraction

As an input, the classification process requires a pattetnxrr o con-
tainingR=2 features extracted using a sliding windl} 2" of the size
64x 64 pixels.

Methods of features computation[5]

» Joace-based features

1. The median
2. The standard deviation
» DFT-based features [3]
1. The mean square magnitude of the low-frequency coefteif@am
the interval(O;Fs/4) in 2 dimensions
2. The mean square magnitude of the high-frequency coeffscieom
the interval(Fs/4;Fs/2), whereFs is the sampling frequency
» DWT-based features [1]

1. The mean of square values of the scaling coefficients fevai B

2. The median of square values of the diagonal wavelet caeftefrom
level 3 (biord.4 wavelet)

(a) DFT FEATURES

(b) DWT FEATURES

Fig. 2 Coefficients exploited for features computation presgr{ayhigh-
lighted DFT magnitudes groups aiid) highlighted DWT coefficients
subbands (re-normalized for better visibility)

4. Classification

Classification using self-organizing neural networkg2]

ONE-LAYER NN OF PARAMETERSW, b

» Classification ofQ segments using fea-
tures organized in the pattern matHy o i

» The number of classé&sequals the num-
ber of output layer elements

Class A

Class B

21

Class C

» The training process

>The weights matridVsr Is recursively recalculated to minimize th

distances between each input vector and the corresponeigiis of
the winning neuron (with coefficients closest to the curpaitern)

> Successful when the network weights belonging to sepanati@ub
elements represent typical class individuals

The Cluster Segmentation Criterion (CSC)[6]

» Each class=1,2,...,ScomprisingN;-segments is characterized by t
mean Euclidean distan¢&st of the column feature vectors, of class
segmentgy for k=1.2,--- N, from the class center in theth row of
matrix Wsr = [W1,Wo, ..., Wg|" by relation

1 &
ClassDigt (i) = —
(1) N k;

» The mean value of average class distances divided by the vaganof
class centers distances

CSC = mean(ClassDigt) / mean(Dist(W,W"))

Dia(pjkvwi) (5)

(6)

» Evaluates the classification process giving low values éongact and
well separated clusters and high values for close and dispalusters

5. Results

(a) IMAGE 1 CSC CRITERION

(b) IMAGE 2 CSC CRITERION
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(c) IMAGE 3 CSC CRITERION (d) IMAGE 4 CSC CRITERION
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Fig. 4 Classification results according to tG8C criterion using different
smoothing and feature extraction methods(frimage 1,(b) image 2,
(c) image 3, andd) image 4.

6. Conclusions

The proposed region detection algorithm is based uponreatdraction
using the sliding window and subsequent classificationguamartificial

neural network. Considering the data properties, we predhcee dif-

ferent feature computation methods based on the spacelefieg and
wavelet domain. According to theSC measure of clusters quality an
visual evaluation of the segmentation results, the DWT aRd [2atures
after smoothing slightly surpass the other methods. Wawtlankage
smoothing surpasses median filtering in the positive effecthe seg-
mentation results except when in combination with DFT fesgu

Future work

» Use overlapping windows

» Improve image quality (locally varying sharpness, scrasgh

» Search for the most efficient combination of features andodhmag
methods

» Evaluate the percentage of successfully classified segment

» More experiments
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