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This paper presents the use of the sliding window technique for texture
feature extraction in order to identify regions of interestin microscopic
images of aluminium alloys. Our goal is to automate experimental eval-
uation of high-temperature sustainability of such alloys of various com-
position. The study includes the comparison of selected feature extrac-
tion methods within the space, frequency and space-scale domains using
namely space-based statistics, the discrete Fourier transform (DFT), and
the discrete wavelet transform (DWT) for features computation. The com-
pactness of feature clusters is evaluated exploiting a chosen numerical cri-
terion to determine the most suitable way of features computation and to
compare the resulting features from the three different domains. For real
images, the clusters compactness can often be improved by preprocessing
methods such as smoothing. In this paper, we employ median �ltering and
wavelet shrinkage and observe their effect on the results.

Abstract

Aluminium alloys (Al-Cr-Fe-Ti-Ce)
I Favorable properties: low density! widely used in the automotive and

aerospace industries.

I Usage limitation: high-temperature resistance only up to 200� C

I With an optimal admixture of cerium (Ce), the alloy obtainedby fast
cooling sustains temperatures up to 400� C.

I The degree of high-temperature resistance is observed on annealed alloy
samples of different Ce content using the electronic microscope. (To
a certain point, homogeneous texture becomes coarser.)

Project goal

I Detect the homogeneous and the coarser-texture areas in order to auto-
matically evaluate the degree of temperature degradation.

1. Introduction

(a) IMAGE 1 (b) IMAGE 2

(c) IMAGE 3 (d) IMAGE 4

Fig. 1. Microscopic images of aluminium alloys samples with areasof
coarser texture caused by annealing (image histograms are equalized)

As an input, the classi�cation process requires a pattern matrix PR;Q con-
tainingR= 2 features extracted using a sliding windowf Ikg

Q� 1
k= 0 of the size

64� 64 pixels.

Methods of features computation[5]
I Space-based features

1. The median
2. The standard deviation

I DFT-based features[3]

1. The mean square magnitude of the low-frequency coef�cients from
the intervalh0;Fs=4i in 2 dimensions

2. The mean square magnitude of the high-frequency coef�cients from
the intervalhFs=4;Fs=2i , whereFs is the sampling frequency

I DWT-based features[1]

1. The mean of square values of the scaling coef�cients form level 3
2. The median of square values of the diagonal wavelet coef�cients from

level 3 (bior4.4 wavelet)

2. Texture Features Extraction

Fig. 2Coef�cients exploited for features computation presenting (a) high-
lighted DFT magnitudes groups and(b) highlighted DWT coef�cients
subbands (re-normalized for better visibility)

Two chosen smoothing methods
I Median �ltering (convolution with a 7� 7 mask)

I Wavelet shrinkage (2 levels, bior4.4 wavelet)

The wavelet shrinkage algorithm

I Additional noise model of a noisy wavelet coef�cient observation

w(k) = y(k)+ n(k) (1)
wherey(k) andn(k) correspond to the wavelet coef�cients of a noise-
free signal and iid Gaussian noise, resp., fork= 0;1; : : : ;N� 1.

I MAD estimate of the standard deviation for iid Gaussian noise

ŝ = median( jwd
1(0)j; jwd

1(1)j; : : : ; jwd
1(N1� 1)j ) =0:6745 (2)

wheref wd
1(k)gN1� 1

k= 0 are the diagonal wavelet coef�cients of level 1

I Global penalized thresholdd by Birge-Massart [4] is computed by min-
imizing the criterion

crit (t) = �
t

å
k= 0

w(k)2 + 2 ŝ2 t (a + logN =t) (3)

wherea 2 f R > 1g is a tuning parameter for the penalty term (in this
work a = 1:5) andf w(k)gN� 1

k= 0 are the wavelet coef�cients sorted in de-
creasing order of their absolute value. Fort � minimizing the criterion,
the threshold value is given byd = jw(t � )j.

I Soft thresholding to estimate values of the wavelet coef�cientsy(k) of
the noise-free signal

ŷ(k) =
�

signf w(k)g � (j w(k) j � d) f or j w(k) j> d
0 otherwise

(4)

3. Smoothing

(a) IMAGE 2 SMOOTHED BY MEDIAN FILTERING (b) IMAGE 2 SMOOTHED BY WAVELET SHRINKAGE

Fig. 3 Smoothing of image 2 presenting the results of(a) median �ltering
and(b) wavelet shrinkage

Classi�cation using self-organizing neural networks[2]

I Classi�cation ofQ segments usingR fea-
tures organized in the pattern matrixPR;Q

I The number of classesS equals the num-
ber of output layer elements

P
21

P
11

Class C

Class B

Class A

ONE-LAYER NN OF PARAMETERS W, b

I The training process
. The weights matrixWS;R is recursively recalculated to minimize the

distances between each input vector and the corresponding weights of
the winning neuron (with coef�cients closest to the currentpattern)

. Successful when the network weights belonging to separate output
elements represent typical class individuals

The Cluster Segmentation Criterion (CSC)[6]

I Each classi = 1;2; : : : ;ScomprisingNi-segments is characterized by the
mean Euclidean distanceDist of the column feature vectorsp jk of class
segmentsjk for k= 1;2; � � � ;Ni from the class center in thei-th row of
matrix WS;R = [ w1;w2; : : : ;wS]0by relation

ClassDist(i) =
1
Ni

Ni

å
k= 1

Dist(p jk;wi) (5)

I The mean value of average class distances divided by the meanvalue of
class centers distances

CSC= mean(ClassDist) =mean(Dist(W;W0)) (6)

I Evaluates the classi�cation process giving low values for compact and
well separated clusters and high values for close and dispersed clusters

4. Classi�cation

Space Features DFT Features DWT Features
0.35

0.4

0.45

0.5

0.55

0.6

(a) IMAGE 1 CSC CRITERION
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(b) IMAGE 2 CSC CRITERION
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Fig. 4 Classi�cation results according to theCSCcriterion using different
smoothing and feature extraction methods for(a) image 1,(b) image 2,
(c) image 3, and(d) image 4.

5. Results

(a) SEGMENTED IMAGE 1
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(d) SEGMENTED IMAGE 2
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Fig. 5 Segmentation results for two different alloy samples using(a) the
frequency-based features extracted from image 1 smoothed by median
�ltering, (b) the space-based features from image 2 without smoothing,
(c) the wavelet-based features from image 1 without smoothing,and(d)
the space-based features from image 2 smoothed by wavelet shrinkage
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(a) CLASSIFICATION FOR IMAGE 1, CSC= 0.58
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(b) CLASSIFICATION FOR IMAGE 2, CSC= 0.62
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(c) CLASSIFICATION FOR IMAGE 1, CSC= 0.57
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(d) CLASSIFICATION FOR IMAGE 2, CSC= 0.58
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Fig. 6 Clustering and classi�cation of computed features corresponding
to the segmentation results in Fig. 5 in respective order andincluding
evaluation by theCSCcriterion

The proposed region detection algorithm is based upon feature extraction
using the sliding window and subsequent classi�cation using an arti�cial
neural network. Considering the data properties, we produce three dif-
ferent feature computation methods based on the space, frequency, and
wavelet domain. According to theCSCmeasure of clusters quality and
visual evaluation of the segmentation results, the DWT and DFT features
after smoothing slightly surpass the other methods. Wavelet shrinkage
smoothing surpasses median �ltering in the positive effecton the seg-
mentation results except when in combination with DFT features.
Future work
I Use overlapping windows
I Improve image quality (locally varying sharpness, scratches)
I Search for the most ef�cient combination of features and smoothing

methods
I Evaluate the percentage of successfully classi�ed segments
I More experiments

6. Conclusions
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