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Abstract

This paper presents the use of the sliding window techniqueekture
feature extraction in order to identify regions of intergstmicroscopic
Images of aluminium alloys. Our goal is to automate expentaezval-
uation of high-temperature sustainability of such allofsarious com-
position. The study includes the comparison of selectetlifeaextrac-
tion methods within the space, frequency and space-scat@ids using
namely space-based statistics, the discrete Fourierftram$DFT), and
the discrete wavelet transform (DWT) for features compaoatl he com-
pactness of feature clusters is evaluated exploiting aszchiesmerical cri-
terion to determine the most suitable way of features coatfmut and to
compare the resulting features from the three differentalom For real
Images, the clusters compactness can often be improvecpyguessing
methods such as smoothing. In this paper, we employ mediannp and
wavelet shrinkage and observe their effect on the results.

1. Introduction

Aluminium alloys (Al-Cr-Fe-Ti-Ce)

| Favorable properties: low density widely used in the automotive ang
aerospace industries.

| Usage limitation: high-temperature resistance only up@ @

| With an optimal admixture of cerium (Ce), the alloy obtair®dfast
cooling sustains temperatures up to 400

| The degree of high-temperature resistance is observedwmakad alloy
samples of different Ce content using the electronic mawps. (To
a certain point, homogeneous texture becomes coarser.)

Project goal

| Detect the homogeneous and the coarser-texture areasaintorauto-
matically evaluate the degree of temperature degradation.

(a) IMAGE 1

(b) IMAGE 2

3. Smoothing

Two chosen smoothing methods
| Median ltering (convolution with a 7 7 mask)

| Wavelet shrinkage (2 levels, bior4.4 wavelet)

The wavelet shrinkage algorithm

| Additional noise model of a noisy wavelet coef cient obsaion
w(K) = y(k)+ n(k) (1)

wherey(k) andn(k) correspond to the wavelet coef cients of a nois
free signal and iid Gaussian noise, resp. kKoer0;1;:::;;N 1.

| MAD estimate of the standard deviation for 1id Gaussian ®ois

§ = mediar{ jwS(0)j;jWE(L)j::: jWl(Ny  1)j) =0:6745  (2)

wheref wi(k) gl , are the diagonal wavelet coef cients of level 1
| Global penalized thresholtlby Birge-Massart [4] is computed by min
Imizing the criterion

t
crit(t)= g w(k)?+ 282t (a+ logN =t) (3)
k=0
wherea 2 f R > 1gis a tuning parameter for the penalty term (in t
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(b) SEGMENTED IMAGE 2
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Fig. 5 Segmentation results for two different alloy samples usajghe
frequency-based features extracted from image 1 smoothededlian
ltering, (b) the space-based features from image 2 without smoot
(c) the wavelet-based features from image 1 without smootland(d)
the space-based features from image 2 smoothed by wavalstasipe
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work a = 1.5) andfw(k)gt':%, are the wavelet coef cients sorted in d
creasing order of their absolute value. Fominimizing the criterion,
the threshold value is given = jw(t )j.

| Soft thresholding to estimate values of the wavelet coehtsy(k) of
the noise-free signal
G(K) = signfw(ki)g (Jw(k)j d) for jw(k)j> d
0 otherwise

(4)

(a) IMAGE 2 SMOOTHED BY MEDIAN FILTERING (b) IMAGE 2 SMOOTHED BY WAVELET SHRINKAGE
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Fig. 3 Smoothing of image 2 presenting the result¢éa)fmedian ltering
and(b) wavelet shrinkage

(a) CLASSIFICATION FOR IMAGE 1, CSC=0.58
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(c) CLASSIFICATION FOR IMAGE 1, CSC= 0.57
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Fig. 6 Clustering and classi cation of computed features coroesiing
to the segmentation results in Fig. 5 in respective orderiagdding
evaluation by th€ SCcriterion

4. Classl cation

(c) IMAGE 3 (d) IMAGE 4

Fig. 1. Microscopic images of aluminium alloys samples with arehs
coarser texture caused by annealing (image histogramsjaatized)

2. Texture Features Extraction

As an input, the classi cation process requires a pattertrimiBr.o con-
tainingR= 2 features extracted using a sliding windbmg(kgz 01 of the size
64 64 pixels.

Methods of features computation[5]

| Space-based features

1. The median
2. The standard deviation
| DFT-based featurel3]
1. The mean square magnitude of the low-frequency coeftsi®émm
the interval0; =41 In 2 dimensions
2. The mean square magnitude of the high-frequency coeftsifom
the intervalnl=4;F=2i, whereks Is the sampling frequency
| DWT-based featurd4]

1. The mean of square values of the scaling coef cients favell 3

2. The median of square values of the diagonal wavelet cagfts from
level 3 (biord.4 wavelet)

Fig. 2 Coef cients exploited for features computation preseg{i) high-
lighted DFT magnitudes groups arid) highlighted DWT coef cients
subbands (re-normalized for better visibility)

Classi cation using self-organizing neural networks[2]

ONE-LAYER NN OF PARAMETERS W, b

| Classi cation ofQ segments using fea-
tures organized in the pattern matRxo
| The number of classeSequals the num- Class 5

21

ber of output layer elements

| The training process
. The weights matriXVgg Is recursively recalculated to minimize th
distances between each input vector and the corresponeigiis of
the winning neuron (with coef cients closest to the currpattern)

. Successful when the network weights belonging to sepatatieud
elements represent typical class individuals
The Cluster Segmentation Criterion (CSC)[6]

| Each class= 1;2;:::; ScomprisingN;-segments is characterized by t
mean Euclidean distandaist of the column feature vectors, of class
segmentgy for k= 1;2; ;N from the class center in theth row of

P
ClassDisti) = — g Dist(p;,;w) (5)
Ni 21
| The mean value of average class distances divided by the vaganof
class centers distances

CSC= mearfClassDis) = mear{Dist(W: W9) (6)

| Evaluates the classi cation process giving low values fompact and
well separated clusters and high values for close and dispgalusters

5. Results

(a) IMAGE 1 CSC CRITERION

(b) IMAGE 2 CSC CRITERION
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Fig. 4 Classi cation results according to tl@&SCecriterion using different
smoothing and feature extraction methods (fprimage 1,(b) image 2,
(c) image 3, andd) image 4.
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6. Conclusions
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The proposed region detection algorithm is based uponreatdraction
using the sliding window and subsequent classi cation gsin arti cial
neural network. Considering the data properties, we predhbcee dif-
ferent feature computation methods based on the spacelefieg and
wavelet domain. According to theSCmeasure of clusters quality an
visual evaluation of the segmentation results, the DWT aRd [2atures
after smoothing slightly surpass the other methods. Wawtlankage
smoothing surpasses median Itering in the positive effectthe seg-
mentation results except when in combination with DFT fesgu

Future work

| Use overlapping windows
| Improve image quality (locally varying sharpness, scrasgh

| Search for the most ef cient combination of features and stinimg

methods

(b) CLASSIFICATION FOR IMAGE 2, CSC=0.62
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(d) CLASSIFICATION FOR IMAGE 2, CSC=0.58
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| Evaluate the percentage of successfully classi ed segsnent
| More experiments
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