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Abstract: Image compression and coding form substantial problems in many engi-
neering and biomedical applications. This paper is devoted to the study of the multi-
resolution approach to this problem employing the Haar wavelet transform. In the
initial part of the paper, the computation algorithm of the Haar transform (HT)
for signals and images is proposed. Then we focus on the orthonormality property
of discrete transforms in general. This property fulfilled also by the HT implies
preserving the total amount of signal or image energy in its transform coefficients, as
formulated by Parseval’s theorem. According to this principle, we may calculate the
proportion between the energies conveyed in each coefficients set and the energy of
the original image. These percentual proportions indicate the extent of possible image
compression. Apart from that, the orthogonality property guarantees reconstruction
of a signal or an image from its transform coefficients without any distortion. In
the final part of the paper, the two perfect reconstruction (PR) conditions for both
the decomposition and reconstruction filters are derived employing the z-transform
theory. It is shown, that the Haar filters satisfy the PR conditions.
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1. INTRODUCTION

Digital signal and image processing deals with a
wide range of important tasks including noise re-
duction (further described in Newland (1994) and
Vaseghi (2006)), feature extraction for subsequent
classification, restoration of missing or corrupted
signal or image components. Other challenging
problems are introduced with image compression
and coding. As proposed by many scientists and
mathematicians, a possible solution of the previ-
ously mentioned problems consists in multirate or
wavelet analysis. From many, let us mention J.
Wang and H. K. Huang (1996), G. Menegaz and L.
Grewe and J. P. Thiran (2000), Breakspear et al.

(2004), Kingsbury (2001), Li and Shawe-Taylor
(2004), M. Weeks and M. A. Bayoumi (2002) and
Bullmore et al. (2004).

This paper focuses on the use of the discrete
wavelet transform (DWT) for biomedical image
decomposition, reconstruction and compression
(see D. Montgomery and F. Murtagh and A.
Amira (2003)). As a wavelet function, we ap-
pointed the Haar function for its simplicity and
other important properties.

The initial part of the paper introduces the com-
putation algorithm of the Haar transform (HT)
for one-dimensional and two-dimensional signals.



 (a) SPINAL MR IMAGE  (b) IMAGE CUT

Fig. 1. Real biomedical data representing (a) an
axial spine MR image of the size 512 × 512
and (b) its cut of the size 256× 256

In the following sections, this algorithm is applied
to a magnetic resonance (MR) biomedical image
presented in Fig. 1. By the means of Parseval’s
theorem, we are able to determine the proportion
of the energy contained in each individual set
of the transform’s coefficients. This information
suggests the extent of possible compression.

2. HAAR TRANSFORM IN SIGNAL
ANALYSIS

Let us have a signal {x(n)}N−1
n=0 . Each pair of

its subsequent values {x(n), x(n + 1)} for n =
0, 2, · · · , N − 2 can then be decomposed into two
values (

Xn

Xn+1

)
= T

(
xn

xn+1

)
(1)

using orthogonal decomposition matrix

T=
1√
2

(
1 1
1 −1

)
(2)

Resulting sequence {X0, X2, · · · , XN−2} defines
the low-pass decomposition values with its length
halved in comparison with the original sequence.
The complementary high-pass sequence is com-
posed of values {X1, X3, · · · , XN−1} in the same
way.

A similar principle can be applied to the analysis
of an image [g(n,m)]N,M taking into account that
a one-dimensional signal can be interpreted as a
special case of an image having one column only.
The elementary decomposition element is a 2 x 2
matrix (

gn,m gn,m+1

gn+1,m gn+1,m+1

)
(3)

where n = 0, 2, · · · , N−2 and m = 0, 2, · · · ,M−2.
Each such submatrix is decomposed column-wise
at first

(
G1n,m G1n,m+1

G1n+1,mG1n+1,m+1

)
=T

(
gn,m gn,m+1

gn+1,mgn+1,m+1

)
(4)

and then row-wise using relation

(
Gn,m Gn,m+1

Gn+1,mGn+1,m+1

)
=

(
G1n,m G1n,m+1

G1n+1,mG1n+1,m+1

)
TT(5)

In this manner, the first level of the decomposi-
tion procedure is completed. The resulting matrix
elements may be rearranged to define four sub-
matrices. The low/low-pass submatrix is defined
hereby



G0,0 G0,2 · · · G0,M−2

G2,0 G2,2 · · · G2,M−2

· · ·
GN−2,0 GN−2,2 · · · GN−2,M−2


 (6)

This matrix having the half number of rows and
columns in comparison with the original one can
be used for the next level of decomposition. The
results of the 2-D Haar decomposition of the
spinal MR image into the first and the second level
are presented in Fig. 2.

3. ORTHONORMALITY

A real-valued matrix A of size N×N is orthonor-
mal, if its transpose is equal its inverse (see D. B.
Percival and A. T. Walden (2000)):

AA−1 =AAT =IN (7)

where IN is an identity matrix of size N ×N . In
other words, the columns aj for j = 0, 1, 2, ..., N−1
(same as the rows) of A all have unit norms and
are perpendicular to each other. These two facts
may be expressed by

〈ak,al〉 =
N−1∑

i=0

ak,i al,i = δk,l (8)

where the angle brackets denote the inner product
and δk,l stands for the Kronecker delta function
defined by

δk,l =
{

1 for k = l
0 for k 6= l

(9)

By multiplying the orthonormal matrix A and a
segment of a discrete signal x of size N × 1, we
acquire the coefficients vector w of the same size:

w=Ax (10)

And reversely, the original sequence x can be
synthesised using the relation

x=A−1 w=AT w (11)

4. PARSEVAL’S THEOREM

Let us have a discrete signal {x(n)}N−1
n=0 , whose

squared norm is given by

‖x‖2 = 〈x,x〉 = xT x =
N−1∑
n=0

x2
n (12)
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Fig. 2. The Haar transform decomposition of the
MR image presenting decomposition (a) up
to the first level and (b) up to the second
level displaying the percentual proportions of
energy conveyed in the subimages

This equation also represents the total amount of
energy εx contained in the signal x(n), hence we
obtain:

εx = ‖x‖2 (13)
Let us consider an arbitrary orthonormal trans-
form employed on x as defined in Eq. (10). The fol-
lowing relation reveals a very important property
of all orthonormal transforms, which is preserving
the energy εx in its coefficients w:

εw = ‖w‖2 = wT w = (Ax)T Ax =

= xT AT Ax = xT x = ‖x‖2 = εx (14)

To summarise these findings, Parseval’s theorem
states that the total amount of energy εx con-
tained in the discrete time signal x is equal to
the total energy of its orthogonal transform coef-
ficients w:

εx =
N−1∑
n=0

|xn|2 =
N−1∑

k=0

w2
k (15)

Using this relation, we may calculate the energy
contained in the original image and also in each of
the subimages produced by the Haar transform of
each level, as shown in Fig. 2. For more informa-
tion on Parseval’s theorem, see D. B. Percival and
A. T. Walden (2000). The proportions of energy
may further be exploited for evaluation of the
entropy with a given quantisation step, and thus
determining the decrease in the number of bits per
pixel in comparison with the original image (see
Nick Kingsbury (2006)).

5. PERFECT RECONSTRUCTION

In order to derive the perfect reconstruction
conditions, we introduce the algorithm for dis-
crete wavelet analysis and synthesis of a sequence
{x(n)}N−1

n=0 using an arbitrarily chosen set of fil-
ters. Let N be a power of two so as it best suits
the purposes of the DWT.

Signal decomposition:

(1) Filtering process:

As presented by the scheme in Fig. 3, the signal
x(n) is passed through a low-pass decomposition
filter with an impulse response ld(n) impersonat-
ing the scaling function. This can be expressed as
a convolution

yl(n) =
M−1∑

k=0

ld(k)x(n− k) (16)

where M is the filter order and the filter output
yl(n) is of the same length as x(n). When the z-
transform is applied, the convolution becomes a
multiplication of the corresponding Z-transform
pairs

Yl(z) = Ld(z)X(z) (17)

Analogously, the signal is passed through a high-
pass filter hd(n) representing the wavelet function

yh(n) =
M−1∑

k=0

hd(k)x(n− k) (18)

which in z-domain corresponds to

Yh(z) = Hd(z)X(z) (19)

(2) Downsampling by 2 :

Then both yl(n) and yh(n) are downsampled by
two leaving out every other sample to obtain the
detail and the approximation DWT coefficients of
the first level, wa

1 and wd
1 , respectively, given by

wa
1 = {yl(0), yl(2), yl(4), ..., yl(N−2)} (20)

wd
1 = {yh(0), yh(2), yh(4), ..., yh(N−2)} (21)

Steps 1 and 2 may be subsequently repeated many
times, until there is only a single sample left. Each
such repetition represents another decomposition
level. However, for various applications in prac-
tise, we most frequently use a maximum of four
analysis levels. To keep our description concise,
we consider only a single-level decomposition and
reconstruction.

Signal reconstruction:

To reconstruct the signal x(n) from its DWT
coefficients, we employ the following techniques:

(3) Upsampling by 2 :

Upsampling by two means here inserting a zero
sample between every two original samples (wavelet
coefficients) obtaining

ŷl(n) = {yl(0), 0, yl(2), 0, ..., yl(N−2), 0} (22)

ŷh(n) = {yh(0), 0, yh(2), 0, ..., yh(N−2), 0}(23)

Apparantly, these two sequences are identical to
yl(n) and yh(n) from step 1, respectively, for even
indices of n and have zeros for odd values of n.
The z-transform of ŷl(n) runs as follows
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Fig. 3. A subband coding scheme representing the DWT single-level decomposition and reconstruction
of a given signal x(n)

Ŷl(z) =
∞∑

n=0

ŷl(n)z−n =

= yl(0)z0+yl(2)z−2+· · ·+ yl(N−2)zN−2 =

=
1
2
[ [yl(0)+yl(0)]z0+[yl(1)−yl(1)]z−1+· · ·

· · ·+[yl(N−1)−yl(N−1)]z−(N−1)] = (24)

=
1
2
[
∞∑

n=0

yl(n)z−n +
∞∑

n=0

yl(n)(−1)−nz−n] =

=
1
2
[Yl(z) + Yl(−z)]

And similarly for the high-pass sequence

Ŷh(z) =
1
2
[Yh(z) + Yh(−z)] (25)

(4) Filtering process:

The upsampled sequences ŷl(n) and ŷh(n) are
convolved with the low-pass Lr(n) and the high-
pass Hr(n) reconstruction filters, respectively. In
the z-domain, this procedure produces

X̂l(z) =
1
2
Lr(z)[Yl(z) + Yl(−z)] (26)

X̂h(z) =
1
2
Hr(z)[Yh(z) + Yh(−z)] (27)

(5) Summation:

The z-transform of the reconstructed signal is
produced by the relation

X̂(z) = X̂l(z) + X̂h(z) =

=
1
2
Lr(z)[Yl(z)+Yl(−z)] + (28)

+
1
2
Hr(z)[Yh(z)+Yh(−z)]

Substituing (17) and (19) into the previous equa-
tion yields

X̂(z) =
1
2
Lr(z)[Ld(z)X(z)+Ld(−z)X(−z)] +

+
1
2
Hr(z)[Hd(z)X(z)+Hd(−z)X(−z)] =

=
1
2
X(z)[Lr(z)Ld(z)+Hr(z)Hd(z)] + (29)

+
1
2
X(−z)[Lr(z)Ld(−z)+Hr(z)Hd(−z)]

Should the original signal be reconstructed with
no distortion, then X̂(z) ≡ X(z), which impli-
cates these two perfect reconstruction (PR) con-
ditions:

Lr(z)Ld(z) + Hr(z)Hd(z) ≡ 2 (30)

Lr(z)Ld(−z) + Hr(z)Hd(−z) ≡ 0 (31)
The term X(−z) in (29) is responsible for aliasing
due to downsampling by two in step 2. When the
condition (31) is fulfilled, this term is cancelled
out. Therefore, this condition is sometimes called
the anti-aliasing condition.

The Haar transform matrix T is given by re-
lation (2). Its first row represents the low-pass
filter ld = 1/

√
2 [1, 1] with its z-transform pair

Ld = 1/
√

2 (z−1 + 1). Similarly, the second line
stands for the high-pass filter hd = 1/

√
2 [1,−1]

with its z-transform Hd = 1/
√

2 (z−1 − 1).

Since T is orthonormal and also symmetric, its
inverse can be expressed as T−1 = TT = T
Hence the Haar reconstruction filters lr and hr

are identical to ld and hd given by the matrix
T, respectively, except the inverse time course.
The z-transforms of the synthesis filters are Lr =
1/
√

2 (z + 1) and Hr = 1/
√

2 (z − 1).

Let us verify that these filters satisfy the PR
conditions, first, by substituting into Eq. (30):

L r(z)Ld(z) + Hr(z)Hd(z) =

=
1√
2
(z+1)

1√
2
(z−1+1) +

1√
2
(z−1)

1√
2
(z−1−1)=

=
1
2
[1+z+z−1+1+1−z−z−1+1]= 2 (32)



 (a) 1−LEVEL DECOMPOSITION  (b) RECONSTRUCTION

Fig. 4. The Haar transform reconstruction of
the MR image presenting (a) decomposition
coefficients of the first level and (b) the
reconstructed image

and second, by substituting into the anti-aliasing
condition in Eq. (31):

L r(z)Ld(−z) + Hr(z)Hd(−z) =

=
1√
2
(z+1)

1√
2
(−z−1+1) +

1√
2
(z−1)

1√
2
(−z−1−1)=

=
1
2
[−1+z−z−1+1−1−z+z−1+1]= 0 (33)

To conclude this section, we may state that the
Haar filters satisfy both of the PR conditions de-
rived above. To illustrate this fact, we carried out
a single-level decomposition and reconstruction
of the MR image displayed in Fig. 1b using the
HT. The result is displayed in Fig. 4b. The mean
square error calculated for these two images equals
zero. For more details on PR conditions, see Nick
Kingsbury (2006).

6. CONCLUSION

In this study, we introduced the Haar transform
(HT) as a very simple and useful tool for im-
age compression and focused on its computation
algorithm. We also discussed the orthonormality
property of discrete transforms along with its re-
lationship with Parseval’s theorem, which enables
us to compute the amount of energy contained
in the decomposition coefficients suggesting the
extend of image compression. As an orthonormal
transform, the HT produces perfect reconstruc-
tion from its coefficients. In the final part of the
paper, this crucial property was derived in general
using the means of z-transform.

Our future studies will be devoted to compression
of volumetric biomedical structures and image
coding.
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