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Abstract: Image edges convey undoubtedly the most important part of the percepted information
about the objects depicted in an image. Edge detection and sharpening contribute extensively to
visual enhancement and objects boundaries detection. The term edgedenotes an abrupt change in
the values of image intensity. Sharp edges of a step-function profile may by easily detected by
short gradient masks. In blurred and noisy images, it is moreconvenient to detect edges of different
spatial sizes by multi-scale methods, such as the Canny detector. In this paper, all the edge detection
techniques are applied to biomedical images. Prior to edge extraction, we carry out noise reduction
by wavelet coefficients shrinkage. For this purpose, we use either the Discrete Wavelet Transform
(DWT) or the Dual-Tree Complex Wavelet Transform (DTCWT) designed by N. Kingsbury. The
latter outperforms the DWT by its approximate shift invariance and better directional selectivity.
Furthermore, owing to their sparsity and persistence, the DTCWT coefficients may be modeled by
Hidden Markov models (HMM) and utilized for edge detection.

Keywords: Edge detection, wavelet transform, wavelet shrinkage, gradient masks, Sobel filter,
Canny filter, dual-tree complex wavelet transform, hidden Markov models

1 INTRODUCTION

Image edges are most important for image perception and object boundaries detection [Ran-
gayyan, 2005]. The termedgedenotes an abrupt change in the values of image intensity represented
by high frequencies in the Fourier domain. Sharp edges of a steep step-function profile may by easily
detected by short gradient masks [Petrou and Bosdogianni, 2000; Hlaváč and Sedláček, 2007]. However,
these short-tap filters proof insufficient for blurred or noisy edges. Extension of the filter tap length leads
to blurring the originally sharp edges. It is more convenient to detect edges of different spatial sizes by
multi-scale methods, such as the Canny detector [Petrou andBosdogianni, 2000; Hlaváč and Sedláček,
2007] having the form of the first derivative of Gaussian withvariable standard deviation.

In this paper, we detect edges in biomedical computed tomography (CT) and magnetic reso-
nance (MR) images of the brain. As a preprocessing step, we attempt to reduce the amount of noise
by soft global thresholding of wavelet coefficients. For this purpose, we use either the Discrete Wavelet
Transform (DWT) or the Dual-Tree Complex Wavelet Transform(DTCWT) designed by N. Kingsbury
[Kingsbury, 2000].

Thanks to the sparsity and persistence properties of the DTCWT coefficients, this complex
wavelet representation may be modeled as a Hidden Markov model (HMM) and thus utilized for edge
detection [Romberg et al., 2001]. Let us begin with describing the DTCWT algorithm.

2 THE DUAL-TREE COMPLEX WAVELET TRANSFORM

Despite its usefulness in many signal processing applications, the critically sampled discrete
wavelet transform (DWT) encounters the following limitations [Selesnick et al., 2005]:

• Oscillationsof coefficients at a singularity (coefficients at a singularity are expected to be large at
all scales, however, some values can be very small due to zero-crossings)

• Shift variance(coefficients do not simply shift after a shift in the signal,they change chaotically)

• Aliasing due to downsampling and non-ideal filtering during the analysis (canceled out by the
synthesis filters only provided that the coefficients are notaltered
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• Lack of directional selectivityin higher dimensions (only 3 directional subbands in 2D; unable to
distinguish between+45◦ and−45◦ edge orientations)
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Figure 1 – Outline of 1-dimensional dual-tree complex wavelet transform analysis including convolution
(multiplication in the Z-domain) with the corresponding filter and downsampling by 2 at each level

The dual-tree complex wavelet transform (DTCWT) is designed [Kingsbury, 2000; Selesnick
et al., 2005] to overcome these problems taking inspirationfrom the Fourier transform which is shift
invariant. A large magnitude in this representation implies the presence of a singularity while the phase
signifies its position within the support of the basis function. Magnitude is shift invariant and phase
linearly encodes the shift. To provide such magnitude-phase representation, the DTCWT needs employ
analyticor quadraturewavelets.

An analytic waveletψc(t) = ψr(t) + j ·ψi(t) is composed of two real waveletsψr(t) andψi(t)
forming a Hilbert transform (HT) pair given as

ψi(t) = HT{ψr(t)} =
1

π

∫

∞

−∞

ψr(t)

t− τ
dτ = ψr(t)

1

π t
(1)

and for their respective Fourier transform pairsΨr(ω) andΨi(ω)

Ψi(ω) = FT{ψi(t)} = FT{HT{ψr(t)}} = −j · sgn(ω)Ψr(ω) (2)

which means that they are orthogonal, i.e. shifted byπ/2 in the complex plain [Shukla, 2003]. The
overall Fourier spectrum of such quadrature filters is single-sided (zero for negative frequenciesω < 0).
Thus half the bandwidth is spared and aliasing is almost suppressed which is substantial for desired shift
invariance.

Nevertheless, it is impossible to design analytic waveletswith finite (compact) support as the HT
is infinitely extended in both time and frequency domain. As an implication, the HT pair of a wavelet
function of finite support has infinite support Selesnick et al. [2005]. Due to this fact, wavelets may only
be designed approximately analytic, shift invariant, and aliasing-free.

The dual-tree approach to complex wavelet transform construction is2d : 1 redundant in compar-
ison with the DWT ind-dimensional space which is however still far less than thatfor the undecimated
DWT. As implied in its name, the DTCWT is realized in two filterbank treesa and b composed of
real-valued filters producing real and imaginary parts of the complex coefficients, resp., as outlined in
Fig. 1.
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There are several solutions of filter design for the DTCWT. All these solutions endeavour for the
filters to fulfil thehalf-sample delay condition[Selesnick et al., 2005] which guarantees their analicity.It
states that the scaling filtersh0a andh0b are in quadrature when offset from one another by a half sample

h0b(n) = h0a(n− 0.5) (3)

As a result, the lowpass filters of one tree interpolate midway between the lowpass filters of the other tree
and the DTCWT is shift invariant. Unfortunately, the half-sample delay condition cannot be implemented
by filters with compact support which always have a certain non-zero gain in their stopband and aliasing
cannot be eliminated. That is why the lowpass filtersh0a, h0b, same as the highpass filtersh1a, h1b of
both trees, are only inapproximatequadrature.

For this paper, we chose theq-shiftfilter design [N. G. Kingsbury, 2003] for the DTCWT. These
filters got their name from their symmetry around the pointn = 0.5(N −1)−0.25 which is a quarter
of a sampling period away from the center. As a consequence, the phase response of these filters is
approximately linear while the overall phase response of the complex filters is exactly linear.

So as the Q-shift filters provide perfect reconstruction of the input signalx, the synthesis filters
of each treeg0a, g1a andg0b, g1b form orthogonal pairs with the corresponding analysis filters h0a, h1a

andh0b, h1b such as for the filter lengthN

h0b(n) = h0a(N − 1 − n) (4)

As shown in Fig. 1, filtersho
0a, ho

1a, ho
0b, andho

1b of the first level are different from the others and we
may use any biorthogonal filters of our choice. To pick up opposite samples of the input in both trees,
there is a one-sample offset between treesa andb. Past level 1, we use q-shift filters of a chosen length
and the delays in one tree are 1/2 sample different form the opposite tree in order to get uniform interval
between the samples of both trees and to satisfy (3).

(a) DWT 2−LEVEL DECOMPOSITION (b) DTCWT 2−LEVEL DECOMPOSITION(b) DTCWT 2−LEVEL DECOMPOSITION

Figure 2 – Wavelet analysis into the second level of a MR brainimage exploiting(a) the discrete wavelet
transform (DWT) using the Daubechies 8-tap filter and(b) the dual-tree complex wavelet transform
(DTCWT) with 16-tap q-shift filters [N. G. Kingsbury, 2003]

For image analysis, improved directional selectivity is another advantage of the 2-dimensional
DTCWT over the DWT. While the critically sampled 2D DWT generates three directional subbands per
level conveying image features oriented at the angles of90◦, ±45◦, and0◦, the 2D DTCWT produces
six directional subbands to reveal the details of an image in±15◦, ±45◦ and±75◦ directions.
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Fig. 2 displays a 2-level decomposition of a MR image by the both transforms. Decomposition
in both cases runs first on columns and then on the rows of the resulting matrix. The output becomes
the input for the next level. The 2D DTCWT is 4-times more computation expensive than the 2D DWT
which is a little price for the improved directional selectivity and approximate shift invariance.

3 DENOISING THROUGH WAVELET SHRINKAGE

In this paper, we use both the DWT and the DTCWT for noise reduction by wavelet coefficients
shrinkage assuming the noise additive and dominant in higher frequencies while the signal is assumed
dominant in lower frequencies. We decide on soft global threshold supposing that large coefficients
contain a similar amount of noise as the smaller ones.
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Figure 3 – Soft thresholding of a CT image for noise reductionpresenting histograms of(a) the mag-
nitudes of the DTCWT coefficients, and(b) the DWT coefficients of a selected subband before wavelet
shrinkage, and(c) the soft thresholding scheme

For soft global thresholding, modification of the wavelet coefficients of all levels{c(k)}M−1
k=0

whereM is their total number by the thresholdδ results in zeroing out coefficients in the absolute value
smaller thanδ and decreasing those larger thanδ by δ according to Fig. 3c and the formula

cs(k)=

{

signc(k) (|c(k) | −δ) if |c(k) |> δ
0 if |c(k) |≤ δ

(5)

To settle the thresholding level, we need estimate the noisestandard deviation. For this purpose, the
median absolute deviation (MAD) estimator is computed fromthe first level HiHi coefficients, which
contain the highest frequencies and thus are supposed to be noise dominated

σ̂mad =
median{|chh1 (0)|, |chh1 (1)|, . . . , |chh1 (N/4 − 1)|}

0.6745
(6)

where|chh1 (n)| is the absolute value of then-th HiHi coefficient of level 1 andN is the image size. The
constant in the denominator applies to independent identically distributed Gaussian noise. The median
approach is robust against large deviations of noise variance.

The estimated value of the standard deviation is used to calculate the soft global threshold limit
from the Donoho formula

δ =
√

2 σ̂2
mad log(N) (7)

After thresholding, the image is reconstructed from the altered wavelet coefficients leaving the scaling
coefficients unchanged. In case of the DTCWT, we threshold only coefficients magnitudes preserving
their phase. Choice of wavelet filters and the number of decomposition levels is influenced by visual
consideration of the results. The noise reduction is used inthis work as a preliminary step to edge
detection described in the next section.
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4 EDGE DETECTION

4.1 Gradient Masks

By anedge, we understand a singularity of the pixel intensity represented by high frequencies in
the Fourier domain. The simplest method of edge detection [Petrou and Bosdogianni, 2000; Rangayyan,
2005; Hlaváč and Sedláček, 2007] is application of short masks approximating the intensity gradient. The
mask centered each time at a differentroot pixel slides along the image. It is convenient for the mask
to have an odd size. At each shift, we compute 2D convolution between the filter and the corresponding
area of the image and assign a new value to the root pixel.

 (a) ORIGINAL IMAGE  (a) ORIGINAL IMAGE + SOBEL  (b) DWT DENOISING + SOBEL  (c) DTCWT DENOISING + SOBEL

Figure 4 – Results of convolution with the Sobel filter displaying (a) the original brain axial MR image
and application of the Sobel filter(b) on the original image,(c) the image after DWT denoising, and
(d) on the image after DTCWT denoising

The Sobel filter given by the following matrices represents one of the gradient approximating
masks

Q(1) =





1 2 1
0 0 0

−1 −2 −1



Q(2) =





0 1 2
−1 0 1
−2 −1 0



Q(3) =





−1 0 1
−2 0 2
−1 0 1



Q(4) =





−2 −1 0
−1 0 1

0 1 2



 (8)

By rotation, this mask approximates the gradient in all eight possible directions to detect horizontal edges
(0◦), diagonal edges (±45◦) and vertical edges90◦. For every root pixel, we chose the orientation with
the absolute maximum value of convolution with the intensity of the neighboring pixels.

Such short-tap edge detectors are sensitive to noise since designed to operate on sharp edges of a
steep step-function profile. Their performance under noisyconditions may be improved by implementing
the denoising process as a preprocessing step as shown in Fig. 4.

When applied straight to blurred and noisy images, these short-tap filters either fail to detect an
edge or tend to give false alarms. However, extending the taplength leads to blurring the originally sharp
edges. The problem lies in attempting to detect edges of different spatial sizes by a single-scale filter. It
is more convenient to analyze images by multi-scale methods, such as the Canny detector.

4.2 Canny Edge Detector

The Canny filter [Rangayyan, 2005; Hlaváč and Sedláček,2007] approximates the first derivative
of a 2D Gaussian in the direction of the gradient. This methodis robust against noise owing to the use
of a Gaussian filter to smooth the data prior to edge detectionand a selective algorithm for weak edges
pixels identification.
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 (a) EDGES: CANNY (σ=1.8)  (b) DWT DEN. & CANNY (σ=1.8) (c) DTCWT DEN. & CANNY (σ=1.8)

 (d) EDGES: CANNY (σ=1)  (e) DWT DEN. & CANNY (σ=1)  (f) DTCWT DEN. & CANNY (σ=1)

Figure 5 – Edge extraction using the Canny method depicting the edges obtained forσ = 1.8 andσ = 1
from (a), (d) the original CT brain image,(b), (e) the image after denoising using the DWT, and(c), (f)
the DTCWT

A 2D Gaussian low-pass filter is separable. Hence we may subsequently convolve the image with
two 1D Gaussian masks in the row and the column directionx andy, resp. For the standard deviationσ,
a zero-mean Gaussian is given as

Gσ,0(x) =
1√
2πσ

· exp
(

− x2

2σ2

)

(9)

The outcome of smoothing is then convolved with the derivatives of the 2D Gaussian in thex-direction

∂Gσ,0(x, y)

∂x
= − x√

2πσ3
· exp

(

−(x2 + y2)

2σ2

)

(10)

and in they-direction. These two results are then combined together into a matrix whose elements are
thresholded to identify pixels corresponding to strong edges. The rest of the pixels may be assigned to
weak edges only if their values are greater than the lower threshold limit and if their gradient corresponds
to the direction of the stronger edges in the neighborhood. The edges after erosion extracted from the CT
image at two different scalesσ are shown in Fig. 5.

By adjusting the value ofσ, the Canny detector may operate at various scales. For the MRimage
in Fig. 6 we selectedσ = 2.5 and for the CT image in Fig. 7σ = 1.8. Both figures display the extracted
edge images combined with the de-noised images.

4.3 Hidden Markov Models

The DTCWT coefficients may also be utilized for edge detection as they depend on the height
and the location of an edge. Since independent on the edge height, the phase of the coefficients provides
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 (a) ORIGINAL IMAGE  (b) DWT DENOISING + CANNY  (c) DTCWT DENOISING + CANNY

Figure 6 – Axial MR brain image processing presenting(a) the original image,(b) and (c) images
processed by the Canny edge detector after de-noising by wavelet shrinkage exploiting the DWT (14-tap
symlet filters, 3 levels) and the DTCWT (14-tap q-shift filters, 3 levels), resp.

us with information about the location. Owing to their sparsity and persistence, the DTCWT coefficients
may be modeled by Hidden Markov models (HMM) [Shaffrey, 2003; Choi and Baraniuk, 2001; Reeves
and Kingsbury, 2000] and thus utilized for edge detection.

The sparsityproperty is entailed by a large number of small coefficients from smooth regions
and fewer large coefficients corresponding to singularities. Hence the marginal distribution of the coeffi-
cients magnitudes of scalenmay be modeled as a 2-component mixture of Rayleigh distributionsR(σn)
of a small varianceσn,S and a large varianceσn,L. Using the Rayleigh distribution on magnitudes is
implied by the assumption of independent identically distributed zero-mean Gaussian distribution of the
real and the imaginary parts which form approximate Hilbertpairs [Shaffrey et al., 2002]. Markovian
dependencies do not tie together the coefficients magnitudes but the hidden statessn taking on values
q = S,L with the probability mass function (pmf)p(sn = q). The overall marginal density function
[Romberg et al., 2001] is given as

f(|cn|) = p(sn = q) f(|cn| | sn = q) (11)

where the conditional probability of the coefficients magnitude|cn| given the statesn corresponds to the
Rayleigh distribution

f(|cn| | sn = q) =
|cn|
σ2

n,q

exp

(

− |cn|2
2σ2

n,q

)

(12)

where the varianceσ2
n,q depends on the stateq and the scalen whentying [Crouse et al., 1998] over the

whole scale.
Thepersistenceproperty denotes strong parent-child relations in the decomposition hierarchy. In

one dimension, the DTCWT runs in binary trees so as each parent coefficient has two children. In images,
quad trees are employed and thus each parent has four children. The relative size of the coefficients
propagates through their children across scale. To describe these dependencies, our 2-state model uses
state transition probabilities between the hidden states of the parent and its children

f(sn = m | sp(n) = n)) =

(

f(sn = S | sp(n) = S) f(sn = L | sp(n) = S)

f(sn = S | sp(n) = L) f(sn = L | sp(n) = L)

)

(13)

where according to the persistence assumptionf(sn = S | sp(n) = S) ≫ f(sn = L | sp(n) = S) and
f(sn = L | sp(n) = L) ≫ f(sn = S | sp(n) = L) andsp(n) is the state of a parent node.
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 (a) ORIGINAL IMAGE  (b) DWT DENOISING + CANNY  (c) DTCWT DENOISING + CANNY

Figure 7 – Canny edge detection applied to a CT brain image presenting(a) the original CT image with
a large malignant tumor gliom IV (tumor - white, necrosis - dark spots inside the tumor, edema around
the tumor - dark),(b) and(c) images processed using the Canny detector (scaleσ = 1.8) after de-noising
by wavelet shrinkage exploiting the DWT (16-tap symlet filters) and the DTCWT (16-tap q-shift filters),
resp.

For the modeling purposes, the DTCWT is more suitable than the DWT for its approximate shift
invariance of magnitude which does not oscillate across scale at the location of a singularity and for its
near linear phase encoding.

The HMM may be trained by various algorithms such as the EM (also forward-backward) algo-
rithm based on an iterative expectation maximization and very well described in Crouse et al. [1998].

As suggested in Romberg et al. [2001], it is possible to modify our HMM to a 3-state model of
the state valuesq = S, T,E to distinguish between texture (T ) and edge (E) singularities. Texture and
edges differ in coherency of phase. While isolated edges have coherent phase across scale as the edge
location does not change across scale, in case of texture, the phase effects interfere with one another
resulting in incoherence across scale. Phase can be modeledas an independent uniform (between0 and
2π) distribution.

Another improvement of the HMM performance can lie in clustering of the coefficients within
each scale [Crouse et al., 1998]. Then we speak ofhidden Markov fieldswhich demand more complicated
training algorithms than the EM or Viterbi algorithm.

5 CONCLUSIONS AND FUTURE WORK

In this paper, we describe the dual-tree complex wavelet transform (DTCWT) and its advantages
over the critically decimated discrete wavelet transform (DWT) which are approximate shift invariance,
steady values of the magnitude across scale, phase representation of edges orientation and improved
directional selectivity in higher dimensions.

We exploited these both transforms for noise reduction in biomedical images by soft wavelet
shrinkage. The resulting images are then used for edge detection by gradient approximating masks and
the canny method. We also suggest the possible use od the DTCWT in edge detection via hidden Markov
modeling as proposed in literature.

In near future, we would like to proceed with studying and improving various edge and line
detection methods particularly those using the DTCWT-basehidden Markov models. They may also be
utilized in denoising.
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