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Abstract: Image edges convey undoubtedly the most important parteopéncepted information
about the objects depicted in an image. Edge detection aamgeshing contribute extensively to
visual enhancement and objects boundaries detection. eftrectigedenotes an abrupt change in
the values of image intensity. Sharp edges of a step-fumgiiofile may by easily detected by
short gradient masks. In blurred and noisy images, it is morenient to detect edges of different
spatial sizes by multi-scale methods, such as the Canngtdetén this paper, all the edge detection
techniques are applied to biomedical images. Prior to egtyaaion, we carry out noise reduction
by wavelet coefficients shrinkage. For this purpose, we itkerethe Discrete Wavelet Transform
(DWT) or the Dual-Tree Complex Wavelet Transform (DTCWTsidmed by N. Kingsbury. The
latter outperforms the DWT by its approximate shift invada and better directional selectivity.
Furthermore, owing to their sparsity and persistence, thEWT coefficients may be modeled by
Hidden Markov models (HMM) and utilized for edge detection.

Keywords: Edge detection, wavelet transform, wavelet shrinkagedigra masks, Sobel filter,
Canny filter, dual-tree complex wavelet transform, hiddearlkév models

1 INTRODUCTION

Image edges are most important for image perception anctobgindaries detection [Ran-
gayyan, 2005]. The terradgedenotes an abrupt change in the values of image intensitggepted
by high frequencies in the Fourier domain. Sharp edges afepsitep-function profile may by easily
detected by short gradient masks [Petrou and Bosdogiaddi; Hlavac and Sedlacek, 2007]. However,
these short-tap filters proof insufficient for blurred orsyoedges. Extension of the filter tap length leads
to blurring the originally sharp edges. It is more convehierdetect edges of different spatial sizes by
multi-scale methods, such as the Canny detector [PetrolBasdogianni, 2000; Hlavac and Sedlacek,
2007] having the form of the first derivative of Gaussian witlniable standard deviation.

In this paper, we detect edges in biomedical computed toaphyr (CT) and magnetic reso-
nance (MR) images of the brain. As a preprocessing step, t@mpt to reduce the amount of noise
by soft global thresholding of wavelet coefficients. Fosthurpose, we use either the Discrete Wavelet
Transform (DWT) or the Dual-Tree Complex Wavelet Transf¢®T CWT) designed by N. Kingsbury
[Kingsbury, 2000].

Thanks to the sparsity and persistence properties of theVDT Coefficients, this complex
wavelet representation may be modeled as a Hidden MarkoehiBd1M) and thus utilized for edge
detection [Romberg et al., 2001]. Let us begin with desngtihe DTCWT algorithm.

2 THE DUAL-TREE COMPLEX WAVELET TRANSFORM

Despite its usefulness in many signal processing appicgtithe critically sampled discrete
wavelet transform (DWT) encounters the following limitats [Selesnick et al., 2005]:

e Oscillationsof coefficients at a singularity (coefficients at a singtjasaire expected to be large at
all scales, however, some values can be very small due teczessings)
e Shift variancg(coefficients do not simply shift after a shift in the sigrthky change chaotically)

e Aliasing due to downsampling and non-ideal filtering during the asialycanceled out by the
synthesis filters only provided that the coefficients areattetred
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e Lack of directional selectivityn higher dimensions (only 3 directional subbands in 2D;hle&o
distinguish between-45° and—45° edge orientations)

Q-SHIFT DUAL-TREE CWT
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Im{Los}

Im{His}

Level 1 Level 2 Level 3

Figure 1 — Outline of 1-dimensional dual-tree complex wat/ghnsform analysis including convolution
(multiplication in the Z-domain) with the correspondingdi and downsampling by 2 at each level

The dual-tree complex wavelet transform (DTCWT) is desigfteingsbury, 2000; Selesnick
et al., 2005] to overcome these problems taking inspiratiom the Fourier transform which is shift
invariant. A large magnitude in this representation ingptiee presence of a singularity while the phase
signifies its position within the support of the basis fuocti Magnitude is shift invariant and phase
linearly encodes the shift. To provide such magnitude-phlapresentation, the DTCWT needs employ
analyticor quadraturewavelets.

An analytic wavelet)..(t) = 1,(t) + j-1;(t) is composed of two real wavelets (¢) and; (t)
forming a Hilbert transform (HT) pair given as

vit) = AT 0y =~ [ 2 War — - W)

T ) oot —T Tt

and for their respective Fourier transform palrs(w) and¥; (w)

Vi(w) = FT{¢i(t)} = FT{HT{¢,(t)}} = —j - sgn(w)¥r(w) (2)

which means that they are orthogonal, i.e. shiftedr3g in the complex plain [Shukla, 2003]. The
overall Fourier spectrum of such quadrature filters is sirgifled (zero for negative frequencies< 0).
Thus half the bandwidth is spared and aliasing is almostresppd which is substantial for desired shift
invariance.

Nevertheless, it is impossible to design analytic wavelsts finite (compact) support as the HT
is infinitely extended in both time and frequency domain. Adraplication, the HT pair of a wavelet
function of finite support has infinite support Selesnicklef2905]. Due to this fact, wavelets may only
be designed approximately analytic, shift invariant, alfmsang-free.

The dual-tree approach to complex wavelet transform coctson is2¢ : 1 redundant in compar-
ison with the DWT ind-dimensional space which is however still far less than fimathe undecimated
DWT. As implied in its name, the DTCWT is realized in two filtbank treesa andb composed of
real-valued filters producing real and imaginary parts ef¢dbmplex coefficients, resp., as outlined in
Fig. 1.
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There are several solutions of filter design for the DTCWTildse solutions endeavour for the
filters to fulfil the half-sample delay conditiofselesnick et al., 2005] which guarantees their analiity.
states that the scaling filtekg, andhg, are in quadrature when offset from one another by a half sampl

hob(n) = h0a(n — 05) (3)

As a result, the lowpass filters of one tree interpolate mydeetween the lowpass filters of the other tree
and the DTCWT is shift invariant. Unfortunately, the hadfrsple delay condition cannot be implemented
by filters with compact support which always have a certaimpero gain in their stopband and aliasing
cannot be eliminated. That is why the lowpass filtegs, hq,, Same as the highpass filtérs,, hq;, of
both trees, are only iapproximatequadrature.

For this paper, we chose theshiftfilter design [N. G. Kingsbury, 2003] for the DTCWT. These
filters got their name from their symmetry around the peint 0.5(N — 1) —0.25 which is a quarter
of a sampling period away from the center. As a consequeheepliase response of these filters is
approximately linear while the overall phase response@ttmplex filters is exactly linear.

So as the Q-shift filters provide perfect reconstructiorhefinput signalr, the synthesis filters
of each treeyy,, g1 andges, g1, form orthogonal pairs with the corresponding analysisrltg,, h1,
andhgy, h1p such as for the filter lengthv

hop(n) = hoa(N — 1 —n) (4)

As shown in Fig. 1, filtersif,, h{,, h(,, andhg, of the first level are different from the others and we
may use any biorthogonal filters of our choice. To pick up @eosamples of the input in both trees,
there is a one-sample offset between tr@esdb. Past level 1, we use g-shift filters of a chosen length
and the delays in one tree are 1/2 sample different form tpegi{e tree in order to get uniform interval

between the samples of both trees and to satisfy (3).

(a) DWT 2-LEVEL DECOMPOSITION (b) DTCWT 2-LEVEL DECOMPOSITION

Figure 2 — Wavelet analysis into the second level of a MR hiraage exploitinga) the discrete wavelet
transform (DWT) using the Daubechies 8-tap filter ghjl the dual-tree complex wavelet transform
(DTCWT) with 16-tap g-shift filters [N. G. Kingsbury, 2003]

For image analysis, improved directional selectivity isthier advantage of the 2-dimensional
DTCWT over the DWT. While the critically sampled 2D DWT geatss three directional subbands per
level conveying image features oriented at the angle¥)of +45°, and0°, the 2D DTCWT produces
six directional subbands to reveal the details of an imagelisr, £45° and+75° directions.
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Fig. 2 displays a 2-level decomposition of a MR image by thih li@nsforms. Decomposition
in both cases runs first on columns and then on the rows of thdtireg matrix. The output becomes
the input for the next level. The 2D DTCWT is 4-times more comation expensive than the 2D DWT
which is a little price for the improved directional seledi and approximate shift invariance.

3 DENOISING THROUGH WAVELET SHRINKAGE

In this paper, we use both the DWT and the DTCWT for noise redindy wavelet coefficients
shrinkage assuming the noise additive and dominant in hifgjeguencies while the signal is assumed
dominant in lower frequencies. We decide on soft globaldhotd supposing that large coefficients
contain a similar amount of noise as the smaller ones.

(2) DTCWT: [HiHil, —45°, LEVEL 2 (b) DWT: HiHi, LEVEL 2 (c) SOFT THRESHOLDING
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Figure 3 — Soft thresholding of a CT image for noise reducpogsenting histograms ¢&) the mag-
nitudes of the DTCWT coefficients, arfd) the DWT coefficients of a selected subband before wavelet
shrinkage, andc) the soft thresholding scheme

For soft global thresholding, modification of the waveleeffiwients of all levels{c(k)} 1"

whereM is their total number by the threshaldesults in zeroing out coefficients in the absolute value
smaller thanj and decreasing those larger thaby § according to Fig. 3c and the formula

_ signe(k) (|e(k)| =d) if |e(k)|>d

Cs(k):{ 0 it | c(k) |< 0 ©)
To settle the thresholding level, we need estimate the rsimedard deviation. For this purpose, the
median absolute deviation (MAD) estimator is computed fittven first level HiHi coefficients, which
contain the highest frequencies and thus are supposed msgedominated

Fmad = medzan{‘c?h(o)ya ‘C?h(l)ya ce ’C?h(N/Zl — 1)‘}
ma 0.6745

where|ci"(n)] is the absolute value of theth HiHi coefficient of level 1 andV is the image size. The
constant in the denominator applies to independent idghtidistributed Gaussian noise. The median
approach is robust against large deviations of noise vegian

The estimated value of the standard deviation is used talesdcthe soft global threshold limit

from the Donoho formula
6 =1/262 . 1log(N) (7)

After thresholding, the image is reconstructed from therall wavelet coefficients leaving the scaling
coefficients unchanged. In case of the DTCWT, we threshold arefficients magnitudes preserving
their phase. Choice of wavelet filters and the number of deosition levels is influenced by visual

consideration of the results. The noise reduction is useithigmwork as a preliminary step to edge
detection described in the next section.

(6)
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4 EDGE DETECTION
4.1 Gradient Masks

By anedge we understand a singularity of the pixel intensity repnése by high frequencies in
the Fourier domain. The simplest method of edge detectietrg2 and Bosdogianni, 2000; Rangayyan,
2005; Hlavac and Sedlacek, 2007] is application of simarsks approximating the intensity gradient. The
mask centered each time at a differemdt pixel slides along the image. It is convenient for the mask
to have an odd size. At each shift, we compute 2D convolutatween the filter and the corresponding
area of the image and assign a new value to the root pixel.

() ORIGINAL IMAGE
B ol )

Figure 4 — Results of convolution with the Sobel filter digjotg (a) the original brain axial MR image
and application of the Sobel filtéb) on the original image(c) the image after DWT denoising, and
(d) on the image after DTCWT denoising

The Sobel filter given by the following matrices represemnte of the gradient approximating
masks

1 2 1 0 1 2 -1 0 1 -2-10
Q= ( 00 0]|Q®= ( -1 01 |Q®=[ 202 |QW=[ -1 01 | (8
-1 -2 -1 -2-10 -1 0 1 0 1 2
By rotation, this mask approximates the gradient in all gpgissible directions to detect horizontal edges
(0°), diagonal edgest{45°) and vertical edge80°. For every root pixel, we chose the orientation with

the absolute maximum value of convolution with the intgneitthe neighboring pixels.

Such short-tap edge detectors are sensitive to noise sisagned to operate on sharp edges of a
steep step-function profile. Their performance under noisyditions may be improved by implementing
the denoising process as a preprocessing step as shown #h Fig

When applied straight to blurred and noisy images, these-so filters either fail to detect an
edge or tend to give false alarms. However, extending thietayih leads to blurring the originally sharp
edges. The problem lies in attempting to detect edges d@rdift spatial sizes by a single-scale filter. It
is more convenient to analyze images by multi-scale mettsoth as the Canny detector.

4.2 Canny Edge Detector

The Canny filter [Rangayyan, 2005; Hlavac and SedlaZ@@7] approximates the first derivative
of a 2D Gaussian in the direction of the gradient. This metisadbust against noise owing to the use
of a Gaussian filter to smooth the data prior to edge deteetimha selective algorithm for weak edges
pixels identification.
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(a) EDGES: CANNY (0=1.8)  (b) DWT DEN. & CANNY (0=1.8) (c) DTCWT DEN. & CANNY (0=1.8)

-—

-2

gJ z:rhr'm*\ qu ju& (SN Q 5 %ﬂ \R\

(d) EDGES: CANNY (0=1) (e) DWT DEN. & CANNY (0_1) () DTCWT DEN. & CANNY (0=1)
RZUL 5 UG -
7 ﬁg‘l}.{i

A

j‘u-;- '«_,f-.‘ q:)
Ry L} uiﬁ/&

@3’ 7
. Sl A%

Figure 5 — Edge extraction using the Canny method depicliagetiges obtained for= 1.8 ando = 1
from (a), (d) the original CT brain imaggb), (e) the image after denoising using the DWT, gnj (f)
the DTCWT

-

A 2D Gaussian low-pass filter is separable. Hence we may qubady convolve the image with
two 1D Gaussian masks in the row and the column directiandy, resp. For the standard deviatien
a zero-mean Gaussian is given as

Goo(x) = ! ex (_x_2> 9)
a,0 — /_271'0' D 20_2
The outcome of smoothing is then convolved with the denrrestiof the 2D Gaussian in thedirection
2 2
8G0,0 (I,y) — x cexp | — (I +y ) (10)
ox RV AQm03 202

and in they-direction. These two results are then combined togethierammatrix whose elements are
thresholded to identify pixels corresponding to strongesdgrhe rest of the pixels may be assigned to
weak edges only if their values are greater than the lowestinld limit and if their gradient corresponds
to the direction of the stronger edges in the neighborhobe. edges after erosion extracted from the CT
image at two different scalesare shown in Fig. 5.

By adjusting the value af, the Canny detector may operate at various scales. For thieldée
in Fig. 6 we selected = 2.5 and for the CT image in Fig. & = 1.8. Both figures display the extracted
edge images combined with the de-noised images.

4.3 Hidden Markov Models

The DTCWT coefficients may also be utilized for edge detects they depend on the height
and the location of an edge. Since independent on the edglethttie phase of the coefficients provides
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(a) ORIGINAL IMAGE

Figure 6 — Axial MR brain image processing present(ag the original image(b) and (c) images
processed by the Canny edge detector after de-noising bgletahrinkage exploiting the DWT (14-tap
symlet filters, 3 levels) and the DTCWT (14-tap g-shift fiteB levels), resp.

us with information about the location. Owing to their sjitgrand persistence, the DTCWT coefficients
may be modeled by Hidden Markov models (HMM) [Shaffrey, 200801 and Baraniuk, 2001; Reeves
and Kingsbury, 2000] and thus utilized for edge detection.

The sparsityproperty is entailed by a large number of small coefficientsnf smooth regions
and fewer large coefficients corresponding to singularitiéence the marginal distribution of the coeffi-
cients magnitudes of scatemay be modeled as a 2-component mixture of Rayleigh distoisI R (o)
of a small variancer,, s and a large variance,, ;. Using the Rayleigh distribution on magnitudes is
implied by the assumption of independent identically distied zero-mean Gaussian distribution of the
real and the imaginary parts which form approximate Hillpaits [Shaffrey et al., 2002]. Markovian
dependencies do not tie together the coefficients magmithdethe hidden states, taking on values
g = S, L with the probability mass function (pmf)(s,, = ¢). The overall marginal density function
[Romberg et al., 2001] is given as

flenl) = p(sn = q) f(leal [ sn = q) (11)

where the conditional probability of the coefficients magde|c,,| given the state,, corresponds to the
Rayleigh distribution

_ _ ‘Cn’ ’Cn‘2
flenllsn=q) = 5= exp| —5—=— (12)
n.q 2054

where the varianceﬁ,q depends on the stateand the scale whentying [Crouse et al., 1998] over the
whole scale.

Thepersistenc@roperty denotes strong parent-child relations in the agsition hierarchy. In
one dimension, the DTCWT runs in binary trees so as eachpaefiicient has two children. In images,
quad trees are employed and thus each parent has four child@iee relative size of the coefficients
propagates through their children across scale. To destitgse dependencies, our 2-state model uses
state transition probabilities between the hidden stdtdseqparent and its children

_ _onw [ fsn=5]5m)=5) flsn=L|spm)=S5)
flon =m|spem =n)) = ( F(sn =55y = L) flsn=L|sym = L)

where according to the persistence assumpfion, = S| s,y = S) > f(sn = L|spr) = S) and
f(sn=L|spm) = L) > f(sn = 5| spm) = L) ands,, is the state of a parent node.

(13)
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(a) ORIGINAL IMAGE

(b) DWT DENOISING + CANNY
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(c) DTCWT DENOISING + CANNY

Figure 7 — Canny edge detection applied to a CT brain imageeptmg(a) the original CT image with

a large malignant tumor gliom IV (tumor - white, necrosis fldapots inside the tumor, edema around
the tumor - dark)(b) and(c) images processed using the Canny detector (scalel .8) after de-noising
by wavelet shrinkage exploiting the DWT (16-tap symlet fd)eand the DTCWT (16-tap g-shift filters),
resp.

For the modeling purposes, the DTCWT is more suitable tham¥WVT for its approximate shift
invariance of magnitude which does not oscillate acrosk stahe location of a singularity and for its
near linear phase encoding.

The HMM may be trained by various algorithms such as the EBb(&rward-backward) algo-
rithm based on an iterative expectation maximization amy well described in Crouse et al. [1998].

As suggested in Romberg et al. [2001], it is possible to nyodifr HMM to a 3-state model of
the state valueg = S, T, E to distinguish between textur&Y and edge ¥) singularities. Texture and
edges differ in coherency of phase. While isolated edges bakierent phase across scale as the edge
location does not change across scale, in case of textwehfise effects interfere with one another
resulting in incoherence across scale. Phase can be madetdindependent uniform (betwe@and
2m) distribution.

Another improvement of the HMM performance can lie in clusig of the coefficients within
each scale [Crouse et al., 1998]. Then we spedldafen Markov fieldsvhich demand more complicated
training algorithms than the EM or Viterbi algorithm.

5 CONCLUSIONS AND FUTURE WORK

In this paper, we describe the dual-tree complex wavelestoam (DTCWT) and its advantages
over the critically decimated discrete wavelet transfoBWT) which are approximate shift invariance,
steady values of the magnitude across scale, phase rejaiteserof edges orientation and improved
directional selectivity in higher dimensions.

We exploited these both transforms for noise reduction amigidical images by soft wavelet
shrinkage. The resulting images are then used for edgetidetdsy gradient approximating masks and
the canny method. We also suggest the possible use od the DiC¥dge detection via hidden Markov
modeling as proposed in literature.

In near future, we would like to proceed with studying and riaying various edge and line
detection methods particularly those using the DTCWT-lédgen Markov models. They may also be
utilized in denoising.
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