

EDGE DETECTION IN BIOMEDICAL IMAGES

E. Hošťálková, A. Procházka

Table of Contents

EDGE DETECTION IN BIOMEDICAL IMAGES

Eva Hošťálková & Aleš Procházka

Institute of Chemical Technology in Prague Dept of Computing and Control Engineering http://dsp.vscht.cz/

Process Control 2008, Kouty nad Desnou

EDGE DETECTION IN BIOMEDICAL IMAGES

E. Hošťálková, A. Procházka

Table of Contents

Introduction

Image Denoising

- Analytic Wavelets
- Directional Selectivity
- DWT versus DTCWT
- Denoising Technique

B Edge Detection

- Gradient Masks
- Canny Edge Detector
- Hidden Markov Models (HMM)

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

EDGE DETECTION IN BIOMEDICAL IMAGES

E. Hošťálková, A. Procházka

Table of Contents

1 Introduction

2 Image Denoising

- Analytic Wavelets
- Directional Selectivity
- DWT versus DTCWT
- Denoising Technique

Edge Detection

- Gradient Masks
- Canny Edge Detector
- Hidden Markov Models (HMM)

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

EDGE DETECTION IN BIOMEDICAL IMAGES

E. Hošťálková, A. Procházka

Table of Contents

Introduction

2 Image Denoising

- Analytic Wavelets
- Directional Selectivity
- DWT versus DTCWT
- Denoising Technique

3 Edge Detection

- Gradient Masks
- Canny Edge Detector
- Hidden Markov Models (HMM)

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

EDGE DETECTION IN BIOMEDICAL IMAGES

E. Hoštálková, A. Procházka

Table of Contents

Introduction

2 Image Denoising

- Analytic Wavelets
- Directional Selectivity
- DWT versus DTCWT
- Denoising Technique

3 Edge Detection

- Gradient Masks
- Canny Edge Detector
- Hidden Markov Models (HMM)

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

EDGE DETECTION IN BIOMEDICAL IMAGES

E. Hošťálková, A. Procházka

Introduction

Image Denoising Analytic Wavelets Directional Selectivity DWT versus DTCWT Denoising Technique

- Edge Detection Gradient Masks Canny Detector HMM
- Conclusions
- Further Reading

Image Edges

- Most important for image perception
- Abrupt changes of intensity
 - High frequencies

lethods Used

- Short gradient filters:
 - Insufficient for blurred or noisy images
- Canny detector:
 - More robust against noise
 - Operating at various scales
- Hidden Markov Models:
 - In our future work

EDGE DETECTION IN BIOMEDICAL IMAGES

E. Hošťálková, A. Procházka

Introduction

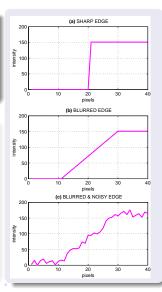

- Image Denoising Analytic Wavelets Directional Selectivity DWT versus DTCWT Denoising Technique
- Edge Detection Gradient Masks Canny Detector HMM
- Conclusions
- Further Reading

Image Edges

- Most important for image perception
- Abrupt changes of intensity
 - High frequencies

Methods Used

- Short gradient filters:
 - Insufficient for blurred or noisy images
- Canny detector:
 - More robust against noise
 - Operating at various scales
- Hidden Markov Models:
 - In our future work

EDGE DETECTION IN BIOMEDICAL IMAGES

E. Hošťálková, A. Procházka

Introduction

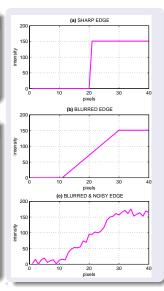

- Image Denoising Analytic Wavelets Directional Selectivity DWT versus DTCWT Denoising Technique
- Edge Detection Gradient Masks Canny Detector HMM
- Conclusions
- Further Reading

Image Edges

- Most important for image perception
- Abrupt changes of intensity
 - High frequencies

Methods Used

- Short gradient filters:
 - Insufficient for blurred or noisy images
- Canny detector:
 - More robust against noise
 - Operating at various scales
- Hidden Markov Models:
 - In our future work

EDGE DETECTION IN BIOMEDICAL IMAGES

E. Hošťálková, A. Procházka

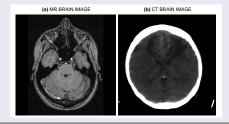

Introduction

Image Denoising Analytic Wavelets Directional Selectivity DWT versus DTCWT Denoising Technique

- Edge Detection Gradient Masks Canny Detector HMM
- Conclusions
- Further Reading

The Data

- Magnetic Resonance (MR) images
- Computed Tomography (CT) images

Preprocessing

- Noise reduction prior to edge detection
- By wavelet coefficients shrinkage

EDGE DETECTION IN BIOMEDICAL IMAGES

E. Hošťálková, A. Procházka

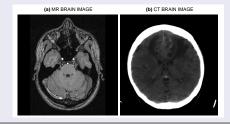

Introduction

Image Denoising Analytic Wavelets Directional Selectivity DWT versus DTCWT Denoising Technique

- Edge Detection Gradient Masks Canny Detector HMM
- Conclusions
- Further Reading

The Data

- Magnetic Resonance (MR) images
- Computed Tomography (CT) images

Preprocessing

- Noise reduction prior to edge detection
- By wavelet coefficients shrinkage

EDGE DETECTION IN BIOMEDICAL IMAGES

E. Hošťálková, A. Procházka

Introduction

Image Denoising Analytic Wavelets Directional Selectivity DWT versus DTCWT Denoising Technique

Edge Detection Gradient Masks Canny Detector HMM

Conclusions

Further Reading

Denoising Prior to Edge Detection

Wavelet Shrinkage Algorithm:

- Wavelet decomposition
- Introduction of wavelet coefficients
- Seconstruction using the altered coefficients

Alternatives of the Wavelet Transform

- Discrete Wavelet Transform (DWT)
- Dual-Tree Complex Wavelet Transform (DTCWT) by Prof. Kingsbury and Prof. Selesnick

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

EDGE DETECTION IN BIOMEDICAL IMAGES

E. Hošťálková, A. Procházka

Introduction

Image Denoising Analytic Wavelets Directional Selectivity DWT versus DTCWT Denoising Technique

Edge Detection Gradient Masks Canny Detector HMM

Conclusions

Further Reading

Denoising Prior to Edge Detection

Wavelet Shrinkage Algorithm:

- Wavelet decomposition
- Introduction of wavelet coefficients
- 8 Reconstruction using the altered coefficients

Alternatives of the Wavelet Transform

- Discrete Wavelet Transform (DWT)
- Dual-Tree Complex Wavelet Transform (DTCWT) by Prof. Kingsbury and Prof. Selesnick

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

EDGE DETECTION IN BIOMEDICAL IMAGES

E. Hošťálková, A. Procházka

Introduction

Image Denoising

- Analytic Wavelets Directional Selectivity
- DWT versus DTCWT
- Denoising Technique
- Edge Detection Gradient Masks Canny Detector HMM
- Conclusions
- Further Reading

Introduction

2 Image Denoising

- Analytic Wavelets
- Directional Selectivity
- DWT versus DTCWT
- Denoising Technique

Edge Detection

- Gradient Masks
- Canny Edge Detector
- Hidden Markov Models (HMM)

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

DTCWT

EDGE DETECTION IN BIOMEDICAL IMAGES

E. Hoštálková, A. Procházka

Introduction

- Image Denoising
- Analytic Wavelets Directional Selectivity
- DWT versus DTCWT
- Denoising Technique
- Edge Detection Gradient Masks Canny Detector
- Conclusions
- Further Reading

Ideal Complex Wavelet Transform

- Employs analytic complex wavelets
- \Rightarrow Magnitude-phase representation
 - Large magnitude \Rightarrow presence of a singularity
 - Phase: its position within the support of the wavelet
- $\bullet \ \Rightarrow \ {\rm Shift \ invariance} \ \& \ {\rm no} \ {\rm aliasing}$

Analytic Wavelets

A complex wavelet $\psi_c(t) = \psi_r(t) + j \cdot \psi_i(t)$ is analytic when its real and imaginary part form a Hilbert transform (HT) pair

$$\psi_i(t) = HT\{\psi_r(t)\} = \frac{1}{\pi} \int_{-\infty}^{\infty} \frac{\psi_r(t)}{t - \tau} d\tau = \psi_r(t) \frac{1}{\pi t}$$
(1)

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

 $t, \tau \dots$ continuous time

DTCWT

EDGE DETECTION IN BIOMEDICAL IMAGES

E. Hošťálková, A. Procházka

Introduction

- Image Denoising
- Analytic Wavelets
- Directional Selectivity DWT versus DTCWT
- Denoising Technique
- Edge Detection Gradient Masks Canny Detector
- Canny Det
- Conclusions
- Further Reading

Ideal Complex Wavelet Transform

- Employs analytic complex wavelets
- $\bullet \Rightarrow$ Magnitude-phase representation
 - Large magnitude \Rightarrow presence of a singularity
 - Phase: its position within the support of the wavelet
- $\bullet \ \Rightarrow \ {\rm Shift \ invariance} \ \& \ {\rm no} \ {\rm aliasing}$

Analytic Wavelets

A complex wavelet $\psi_c(t) = \psi_r(t) + j \cdot \psi_i(t)$ is analytic when its real and imaginary part form a Hilbert transform (HT) pair

$$\psi_i(t) = HT\{\psi_r(t)\} = \frac{1}{\pi} \int_{-\infty}^{\infty} \frac{\psi_r(t)}{t-\tau} d\tau = \psi_r(t) \frac{1}{\pi t} \qquad (1)$$

 $t, \tau \ldots$ continuous time

EDGE DETECTION IN BIOMEDICAL IMAGES

E. Hošťálková, A. Procházka

Introduction

Image Denoising

- Analytic Wavelets Directional Selectivity
- DWT versus DTCWT
- Denoising Technique
- Edge Detection Gradient Masks Canny Detector HMM
- Conclusions
- Further Reading

Fourier Transform of a HT Pair

$$\Psi_i(\omega) = FT\{\psi_i(t)\} = FT\{HT\{\psi_r(t)\}\} = -j \cdot sgn(\omega)\Psi_r(\omega) \quad (2)$$

 $\omega \ldots$ frequency; $j \ldots$ the complex unit

Single-Sided Spectrum as a Consequence

$$\Psi_{c}(\omega) = \Psi_{r}(\omega) + sgn(\omega)\Psi_{r}(\omega)$$
(3)
$$\Psi_{c}(\omega) = \begin{cases} 0 & \text{for } \omega < 0 \\ \Psi_{r}(\omega) & \text{for } \omega = 0 \\ 2\Psi_{r}(\omega) & otherwise \end{cases}$$
(4)

Implications

- No aliasing \Rightarrow shift invariance
- $\bullet~$ Impossible for wavelets of compact support $\Rightarrow~$ only approximately analytic

EDGE DETECTION IN BIOMEDICAL IMAGES

E. Hošťálková, A. Procházka

Introduction

Image Denoising

- Analytic Wavelets
- Directional Selectivity
- DWT versus DTCWT
- Denoising Technique
- Edge Detection Gradient Masks Canny Detector HMM
- Conclusions
- Further Reading

Fourier Transform of a HT Pair

$$\Psi_i(\omega) = FT\{\psi_i(t)\} = FT\{HT\{\psi_r(t)\}\} = -j \cdot sgn(\omega)\Psi_r(\omega) \quad (2)$$

 $\omega \ldots$ frequency; $j \ldots$ the complex unit

Single-Sided Spectrum as a Consequence

$$\Psi_{c}(\omega) = \Psi_{r}(\omega) + sgn(\omega)\Psi_{r}(\omega)$$
(3)

$$\Psi_{c}(\omega) = \begin{cases} \Psi_{r}(\omega) & \text{for } \omega = 0\\ 2\Psi_{r}(\omega) & \text{otherwise} \end{cases}$$
(4)

Implications

- No aliasing \Rightarrow shift invariance
- \bullet Impossible for wavelets of compact support \Rightarrow only approximately analytic

EDGE DETECTION IN BIOMEDICAL IMAGES

E. Hošťálková, A. Procházka

Introduction

Image Denoising

- Analytic Wavelets
- Directional Selectivity
- DWT versus DTCWT
- Denoising Technique
- Edge Detection Gradient Masks Canny Detector HMM

Conclusions

Further Reading

Fourier Transform of a HT Pair

$$\Psi_i(\omega) = FT\{\psi_i(t)\} = FT\{HT\{\psi_r(t)\}\} = -j \cdot sgn(\omega)\Psi_r(\omega) \quad (2)$$

 $\omega \ldots$ frequency; $j \ldots$ the complex unit

Single-Sided Spectrum as a Consequence

$$\Psi_{c}(\omega) = \Psi_{r}(\omega) + sgn(\omega)\Psi_{r}(\omega)$$
(3)

$$\Psi_{c}(\omega) = \begin{cases} 0 & \text{for } \omega < 0 \\ \Psi_{r}(\omega) & \text{for } \omega = 0 \\ 2\Psi_{r}(\omega) & otherwise \end{cases}$$
(4)

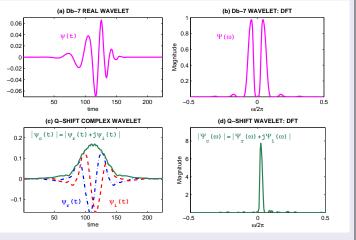
Implications

- No aliasing \Rightarrow shift invariance
- \bullet Impossible for wavelets of compact support \Rightarrow only approximately analytic

EDGE DETECTION IN BIOMEDICAL IMAGES

E. Hošťálková, A. Procházka

Introduction


Image Denoising
Directional Selectivity
Denoising Technique
Edge Detection
Gradient Masks
Canny Detector

HMM

Conclusions

Further Reading

Frequency Spectra of a Real and an Analytic Wavelet

Level 4, 14-tap filters: Daubechies (for DWT) and q-shift (for DTCWT).

EDGE DETECTION IN BIOMEDICAL IMAGES

E. Hošťálková, A. Procházka

Introduction

Image Denoising Analytic Wavelets Directional Selectivity DWT versus DTCWT Denoising Technique

Edge Detection Gradient Masks Canny Detector HMM

Conclusions

Further Reading

Introduction

2 Image Denoising

- Analytic Wavelets
- Directional Selectivity
- DWT versus DTCWT
- Denoising Technique

Edge Detection

- Gradient Masks
- Canny Edge Detector
- Hidden Markov Models (HMM)

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Directional Selectivity

EDGE DETECTION IN BIOMEDICAL IMAGES

E. Hošťálková, A. Procházka

Introduction

- Image Denoising Analytic Wavelets Directional Selectivity DWT versus DTCWT
- Denoising Technique
- Edge Detection Gradient Masks Canny Detector
- Conclusions
- Further Reading

Dual Tree Complex Wavelet Transform (DTCWT)

- Dual tree (two DWT trees) of real filters ⇒ real and imaginary parts of each complex coefficient
- \Rightarrow Directional selectivity in 2D:

DTCWT

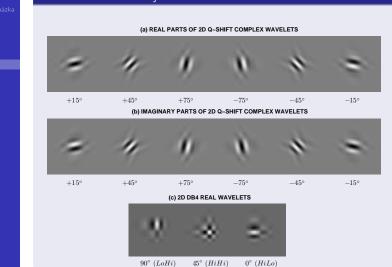
- 6 directional subbands
- ullet $\pm 15^\circ$, $\pm 45^\circ$ and $\pm 75^\circ$
- DWT
 - 3 directional subbands

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

- $\bullet~0^{\circ},~45^{\circ}$ and 90°
- $\Rightarrow 2^d$ redundancy in *d*-dimensional space

EDGE DETECTION IN

BIOMEDICAL IMAGES


Introduction Image Denoising Analytic Wavelets Directional Selectivity DWT versus DTCWT Denoising Technique Edge Detection

Gradient Masks

Canny Detector HMM Conclusions Further Reading

Directional Selectivity

Directional Selectivity of 2D Wavelets

EDGE DETECTION IN BIOMEDICAL IMAGES

E. Hošťálková, A. Procházka

Introduction

Image Denoising Analytic Wavelets Directional Selectivity DWT versus DTCWT Denoising Technique

Edge Detection Gradient Masks Canny Detector HMM

Conclusions

Further Reading

Introduction

2 Image Denoising

- Analytic Wavelets
- Directional Selectivity
- DWT versus DTCWT
- Denoising Technique

Edge Detection

- Gradient Masks
- Canny Edge Detector
- Hidden Markov Models (HMM)

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

EDGE DETECTION IN BIOMEDICAL IMAGES

E. Hošťálková, A. Procházka

Introduction

- Image Denoising Analytic Wavelets Directional Selectivity
- Denoising Technique
- Edge Detection Gradient Masks Canny Detector HMM
- Conclusions
- Further Reading

DWT versus DTCWT

DWT

- Zero crossings at a singularity
- Strong shift dependence
- Aliasing
- Lack of directional selectivity (±45°)
- Critically decimated
- Perfect reconstruction

DTCWT

- Large magnitudes at a singularity
- Approx. shift independence
- Approx. no aliasing
- Improved directional selectivity
- Moderately redundant
- Perfect reconstruction

EDGE DETECTION IN BIOMEDICAL IMAGES

E. Hošťálková, A. Procházka

Introduction

- Image Denoising Analytic Wavelets Directional Selectivity
- DWT versus DTCWT
- Denoising Technique
- Edge Detection Gradient Masks Canny Detector HMM
- Conclusions
- Further Reading

DWT versus DTCWT

DWT

- Zero crossings at a singularity
- Strong shift dependence
- Aliasing
- Lack of directional selectivity (±45°)
- Critically decimated
- Perfect reconstruction

DTCWT

- Large magnitudes at a singularity
- Approx. shift independence
- Approx. no aliasing
- Improved directional selectivity
- Moderately redundant
- Perfect reconstruction

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

EDGE DETECTION IN BIOMEDICAL IMAGES

E. Hošťálková, A. Procházka

Introduction

- Image Denoising Analytic Wavelets Directional Selectivity
- Denoising Technique
- Denoising Technique
- Edge Detection Gradient Masks Canny Detector
- Conclusions
- Further Reading

DWT versus DTCWT

DWT

- Zero crossings at a singularity
- Strong shift dependence
- Aliasing
- Lack of directional selectivity (±45°)
- Critically decimated
- Perfect reconstruction

DTCWT

- Large magnitudes at a singularity
- Approx. shift independence
- Approx. no aliasing
- Improved directional selectivity
- Moderately redundant
- Perfect reconstruction

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

EDGE DETECTION IN BIOMEDICAL IMAGES

E. Hošťálková, A. Procházka

Introduction

- Image Denoising Analytic Wavelets Directional Selectivity
- Denoising Technique
- Edge Detection Gradient Masks Canny Detector HMM
- Conclusions
- Further Reading

DWT versus DTCWT

DWT

- Zero crossings at a singularity
- Strong shift dependence
- Aliasing
- Lack of directional selectivity (±45°)
- Critically decimated
- Perfect reconstruction

DTCWT

- Large magnitudes at a singularity
- Approx. shift independence
- Approx. no aliasing
- Improved directional selectivity
- Moderately redundant
- Perfect reconstruction

EDGE DETECTION IN BIOMEDICAL IMAGES

E. Hošťálková, A. Procházka

Introduction

- Image Denoising Analytic Wavelets Directional Selectivity
- Denoising Technique
- Edge Detection Gradient Masks Canny Detector HMM
- Conclusions
- Further Reading

DWT versus DTCWT

DWT

- Zero crossings at a singularity
- Strong shift dependence
- Aliasing
- Lack of directional selectivity (±45°)
- Critically decimated
- Perfect reconstruction

DTCWT

- Large magnitudes at a singularity
- Approx. shift independence
- Approx. no aliasing
- Improved directional selectivity
- Moderately redundant
- Perfect reconstruction

EDGE DETECTION IN BIOMEDICAL IMAGES

E. Hošťálková, A. Procházka

Introduction

- Image Denoising Analytic Wavelets Directional Selectivity
- Denoising Technique
- Edge Detection Gradient Masks Canny Detector HMM
- Conclusions
- Further Reading

DWT versus DTCWT

DWT

- Zero crossings at a singularity
- Strong shift dependence
- Aliasing
- Lack of directional selectivity (±45°)
- Critically decimated
- Perfect reconstruction

DTCWT

- Large magnitudes at a singularity
- Approx. shift independence
- Approx. no aliasing
- Improved directional selectivity
- Moderately redundant
- Perfect reconstruction

EDGE DETECTION IN BIOMEDICAL IMAGES

E. Hošťálková, A. Procházka

Introduction

Image Denoising Analytic Wavelets Directional Selectivity DWT versus DTCWT Denoising Technique

Edge Detection Gradient Masks Canny Detector

Conclusions

Further Reading

Introduction

2 Image Denoising

- Analytic Wavelets
- Directional Selectivity
- DWT versus DTCWT
- Denoising Technique

Edge Detection

- Gradient Masks
- Canny Edge Detector
- Hidden Markov Models (HMM)

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

EDGE DETECTION IN BIOMEDICAL IMAGES

E. Hošťálková, A. Procházka

Introduction

Image Denoising Analytic Wavelets Directional Selectivity DWT versus DTCWT Denoising Technique

Edge Detection Gradient Masks Canny Detector HMM

Conclusions

Further Reading

Denoising Technique

Wavelet Shrinkage

- Suppressing lower energy wavelet coefficients (noise)
- Thresholding magnitudes of complex w. coefficients
 - Vary slowly
 - Not distorted by aliasing

Soft Universal Thresholding

$$(k) = \begin{cases} sgn(c(k)) (|c(k)| - \delta^{(s)}) & \text{for } |c(k)| > \delta^{(s)} \\ 0 & \text{otherwise} \end{cases}$$

 $\{c(k)\}_{k=0}^{M-1}\ldots$ w. coefficients of all levels

EDGE DETECTION IN BIOMEDICAL IMAGES

E. Hošťálková, A. Procházka

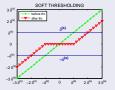
Introduction

- Image Denoising Analytic Wavelets Directional Selectivity DWT versus DTCWT Denoising Technique
- Edge Detection
- Gradient Masks Canny Detector
- нмм
- Conclusions
- Further Reading

Denoising Technique

Wavelet Shrinkage

- Suppressing lower energy wavelet coefficients (noise)
- Thresholding magnitudes of complex w. coefficients
 - Vary slowly
 - Not distorted by aliasing


Soft Universal Thresholding

$$s_{s}(k) = \begin{cases} sgn(c(k)) (|c(k)| - \delta^{(s)}) & \text{for } |c(k)| > \delta^{(s)} \\ 0 & \text{otherwise} \end{cases}$$

 ${c(k)}_{k=0}^{M-1} \dots$ w. coefficients of all levels

 $\delta \ldots$ threshold level

 \overline{c}

EDGE DETECTION IN BIOMEDICAL IMAGES

E. Hošťálková, A. Procházka

Introduction

- Image Denoising Analytic Wavelets Directional Selectivity DWT versus DTCWT Denoising Technique
- Edge Detection Gradient Masks Canny Detector HMM
- Conclusions
- Further Reading

Donoho Soft Threshold Estimate

$$\delta^{(s)} = \sqrt{2 \,\hat{\sigma}_n^2 \log(N)} \tag{6}$$

 $\hat{\sigma}_n \dots$ noise std. deviation estimate; $N \dots$ no. w. coefficients

Median Absolute Deviation (MAD) Estimator

$$\hat{\sigma}_{mad} = \frac{median\{ |c_1^{hh}(0)|, |c_1^{hh}(1)|, \dots, |c_1^{hh}(N/4 - 1)| \}}{0.6745}$$
 (7)

 ${cc_1^{hh}(n)}_{n=0}^{N/4-1}$... HiHi w. coefficient of level 1; N... image size

MAD Estimator Assumptions

- Smallest scale HiHi coefficients noise dominated
- For i.i.d. Gaussian noise
- Robust against large deviations of noise variance

EDGE DETECTION IN BIOMEDICAL IMAGES

E. Hošťálková, A. Procházka

Introduction

Image Denoising Analytic Wavelets Directional Selectivity DWT versus DTCWT Denoising Technique

Edge Detection Gradient Masks Canny Detector

Conclusions

Further Reading

Donoho Soft Threshold Estimate

$$\delta^{(s)} = \sqrt{2 \,\hat{\sigma}_n^2 \log(N)} \tag{6}$$

 $\hat{\sigma}_n \dots$ noise std. deviation estimate; $N \dots$ no. w. coefficients

Median Absolute Deviation (MAD) Estimator

$$\hat{\sigma}_{mad} = \frac{median\{ |c_1^{hh}(0)|, |c_1^{hh}(1)|, \dots, |c_1^{hh}(N/4 - 1)| \}}{0.6745}$$
 (7)

 ${cc_1^{hh}(n)}_{n=0}^{N/4-1}$... HiHi w. coefficient of level 1; N... image size

MAD Estimator Assumptions

- Smallest scale HiHi coefficients noise dominated
- For i.i.d. Gaussian noise
- Robust against large deviations of noise variance

EDGE DETECTION IN BIOMEDICAL IMAGES

E. Hošťálková, A. Procházka

Introduction

Image Denoising Analytic Wavelets Directional Selectivity DWT versus DTCWT Denoising Technique

Edge Detection Gradient Masks Canny Detector

Conclusions

Further Reading

Donoho Soft Threshold Estimate

$$\delta^{(s)} = \sqrt{2 \,\hat{\sigma}_n^2 \log(N)} \tag{6}$$

 $\hat{\sigma}_n \dots$ noise std. deviation estimate; $N \dots$ no. w. coefficients

Median Absolute Deviation (MAD) Estimator

$$\hat{\sigma}_{mad} = \frac{median\{ |c_1^{hh}(0)|, |c_1^{hh}(1)|, \dots, |c_1^{hh}(N/4 - 1)| \}}{0.6745}$$
 (7)

 ${cc_1^{hh}(n)}_{n=0}^{N/4-1}$... HiHi w. coefficient of level 1; N... image size

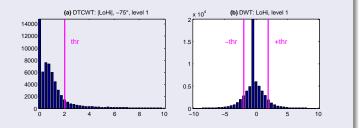
MAD Estimator Assumptions

- Smallest scale HiHi coefficients noise dominated
- For i.i.d. Gaussian noise
- Robust against large deviations of noise variance

EDGE DETECTION IN BIOMEDICAL IMAGES

E. Hošťálková, A. Procházka

Introduction


Image Denoising Analytic Wavelets Directional Selectivity DWT versus DTCWT Denoising Technique

Edge Detection Gradient Masks Canny Detector HMM

Conclusions

Further Reading

Histograms of Wavelet Coefficients

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

4 levels, 14-tap filters: Daubechies for DWT and q-shift for DTCWT

Table of Contents

EDGE DETECTION IN BIOMEDICAL IMAGES

E. Hošťálková, A. Procházka

Introduction

- Image Denoising Analytic Wavelets Directional Selectivity DWT versus DTCWT Denoising Technique
- Edge Detection
- Gradient Masks
- Canny Detector
- нмм
- Conclusions
- Further Reading

Introduction

Image Denoising

- Analytic Wavelets
- Directional Selectivity
- DWT versus DTCWT
- Denoising Technique

Edge Detection Gradient Masks

- Canny Edge Detector
- Hidden Markov Models (HMM)

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

4 Conclusions

E. Hošťálková, A. Procházka

Introduction

- Image Denoising Analytic Wavelets Directional Selectivity DWT versus DTCWT Denoising Technique
- Edge Detection
- Gradient Masks
- Canny Detector
- нмм
- Conclusions
- Further Reading

Gradient Masks

Gradient Edge Detectors

- Filters approximating the intensity gradient
- 2D convolution between the filter and the image
- Short filters: too sensitive to noise and blurring
- Longer filters:
 - More robust against noise
 - Blur the originally sharp edges

Sobel Filter

- Rotation: detection of 0°, \pm 45° and 90° edges
- $\begin{pmatrix} 1 & 2 & 1 \\ 0 & 0 & 0 \\ -1 & -2 & -1 \end{pmatrix} \begin{pmatrix} 0 & 1 & 2 \\ -1 & 0 & 1 \\ -2 & -1 & 0 \end{pmatrix} \begin{pmatrix} -1 & 0 & 1 \\ -2 & 0 & 2 \\ -1 & 0 & 1 \end{pmatrix} \begin{pmatrix} -2 & -1 & 0 \\ -1 & 0 & 1 \\ 0 & 1 & 2 \end{pmatrix}$
 - For every root pixel the rotation variant with the absolute maximum value of convolution

E. Hošťálková, A. Procházka

Introduction

- Image Denoising Analytic Wavelets Directional Selectivity DWT versus DTCWT
- Denoising Technique

Edge Detection

- Gradient Masks
- Canny Detector
- нмм
- Conclusions
- Further Reading

Gradient Masks

Gradient Edge Detectors

- Filters approximating the intensity gradient
- 2D convolution between the filter and the image
- Short filters: too sensitive to noise and blurring
- Longer filters:
 - More robust against noise
 - Blur the originally sharp edges

Sobel Filter

- \bullet Rotation: detection of 0°, $\pm\,45^\circ$ and 90° edges
- $\begin{pmatrix} 1 & 2 & 1 \\ 0 & 0 & 0 \\ -1 & -2 & -1 \end{pmatrix} \begin{pmatrix} 0 & 1 & 2 \\ -1 & 0 & 1 \\ -2 & -1 & 0 \end{pmatrix} \begin{pmatrix} -1 & 0 & 1 \\ -2 & 0 & 2 \\ -1 & 0 & 1 \end{pmatrix} \begin{pmatrix} -2 & -1 & 0 \\ -1 & 0 & 1 \\ 0 & 1 & 2 \end{pmatrix}$
 - For every root pixel the rotation variant with the absolute maximum value of convolution

Gradient Masks

EDGE DETECTION IN BIOMEDICAL IMAGES

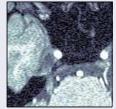
E. Hošťálková, A. Procházka

Introduction

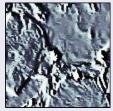
Image Denoising Analytic Wavelets Directional Selectivity DWT versus DTCWT Denoising Technique

Edge Detection

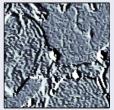
Gradient Mask


Canny Detec HMM

Conclusions


Further Reading

(a) ORIGINAL IMAGE


Sobel Filter for MR Brain Image After Denoising

(c) DWT DENOISING + SOBEL

(b) ORIGINAL IMAGE + SOBEL

(d) DTCWT DENOISING + SOBEL

Table of Contents

EDGE DETECTION IN BIOMEDICAL IMAGES

E. Hošťálková, A. Procházka

Introduction

- Image Denoising Analytic Wavelets Directional Selectivity DWT versus DTCWT Denoising Technique
- Edge Detection
- Gradient Masks
- Canny Detect
- HMM
- Conclusions
- Further Reading

Introduction

Image Denoising

- Analytic Wavelets
- Directional Selectivity
- DWT versus DTCWT
- Denoising Technique

3 Edge Detection

- Gradient Masks
- Canny Edge Detector
- Hidden Markov Models (HMM)

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

4 Conclusions

EDGE DETECTION IN BIOMEDICAL IMAGES

E. Hošťálková, A. Procházka

Introduction

Image Denoising Analytic Wavelets Directional Selectivity DWT versus DTCWT Denoising Technique

Edge Detection

Gradient Masks

Canny Detec

нмм

Conclusions

Further Reading

Canny Edge Detector

- Approximates the derivative of a 2D Gaussian in the direction of the gradient
- Robust against noise
 - \leftarrow Gaussian smoothing filter prior to edge detection
- Adjustable value of the scale σ (the standard deviation in the Gaussian)

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

E. Hošťálková, A. Procházka

Introduction

- Image Denoising Analytic Wavelets Directional Selectivity DWT versus DTCWT Denoising Technique
- Edge Detection
- Gradient Masks
- Canny Detec
- нмм
- Conclusions
- Further Reading

Canny Edge Detector

Canny Algorithm

③ Convolution with 1D Gaussian masks in x and y-direction

$$G_{\sigma,0}(x) = \frac{1}{\sqrt{2\pi\sigma}} \cdot \exp\left(-\frac{x^2}{2\sigma^2}\right) \tag{8}$$

$$\frac{\partial G_{\sigma,0}(x,y)}{\partial x} = -\frac{x}{\sqrt{2\pi\sigma^3}} \cdot \exp\left(-\frac{(x^2+y^2)}{2\sigma^2}\right) \tag{9}$$

- Ombining of these two matrices
- Strong edges: pels value above the upper threshold
- Weak edges:
 - Pels value above the lower threshold
 - The gradient \equiv the direction of the strong edges in the neighborhood

E. Hošťálková, A. Procházka

Introduction

- Image Denoising Analytic Wavelets Directional Selectivity DWT versus DTCWT Denoising Technique
- Edge Detection
- Gradient Masks
- Canny Deter
- нмм
- Conclusions
- Further Reading

Canny Edge Detector

Canny Algorithm

③ Convolution with 1D Gaussian masks in x and y-direction

$$G_{\sigma,0}(x) = \frac{1}{\sqrt{2\pi\sigma}} \cdot \exp\left(-\frac{x^2}{2\sigma^2}\right) \tag{8}$$

$$\frac{\partial G_{\sigma,0}(x,y)}{\partial x} = -\frac{x}{\sqrt{2\pi\sigma^3}} \cdot \exp\left(-\frac{(x^2+y^2)}{2\sigma^2}\right) \tag{9}$$

- Ombining of these two matrices
- Strong edges: pels value above the upper threshold
- Weak edges:
 - Pels value above the lower threshold
 - The gradient \equiv the direction of the strong edges in the neighborhood

E. Hošťálková, A. Procházka

Introduction

- Image Denoising Analytic Wavelets Directional Selectivity DWT versus DTCWT
- Denoising Technique
- Edge Detection
- Gradient Masks
- Canny Deter
- нмм
- Conclusions
- Further Reading

Canny Edge Detector

Canny Algorithm

() Convolution with 1D Gaussian masks in x and y-direction

$$G_{\sigma,0}(x) = \frac{1}{\sqrt{2\pi\sigma}} \cdot \exp\left(-\frac{x^2}{2\sigma^2}\right) \tag{8}$$

$$\frac{\partial G_{\sigma,0}(x,y)}{\partial x} = -\frac{x}{\sqrt{2\pi\sigma^3}} \cdot \exp\left(-\frac{(x^2+y^2)}{2\sigma^2}\right) \tag{9}$$

- Ombining of these two matrices
- Strong edges: pels value above the upper threshold
- Weak edges:
 - Pels value above the lower threshold
 - The gradient \equiv the direction of the strong edges in the neighborhood

E. Hošťálková, A. Procházka

Introduction

- Image Denoising Analytic Wavelets Directional Selectivity DWT versus DTCWT Denoising Technique
- Edge Detection
- Gradient Masks
- Canny Detec
- нмм
- Conclusions
- Further Reading

Canny Edge Detector

Canny Algorithm

③ Convolution with 1D Gaussian masks in x and y-direction

$$G_{\sigma,0}(x) = \frac{1}{\sqrt{2\pi\sigma}} \cdot \exp\left(-\frac{x^2}{2\sigma^2}\right) \tag{8}$$

Convolution with the derivatives of the 2D Gaussian in x-direction (and also in y-direction)

$$\frac{\partial G_{\sigma,0}(x,y)}{\partial x} = -\frac{x}{\sqrt{2\pi\sigma^3}} \cdot \exp\left(-\frac{(x^2+y^2)}{2\sigma^2}\right) \tag{9}$$

- Ombining of these two matrices
- Strong edges: pels value above the upper threshold

Weak edges

- Pels value above the lower threshold
- The gradient \equiv the direction of the strong edges in the neighborhood

E. Hošťálková, A. Procházka

Introduction

- Image Denoising Analytic Wavelets Directional Selectivity DWT versus DTCWT Denoising Technique
- Edge Detection
- Gradient Masks
- Canny Deter
- нмм
- Conclusions
- Further Reading

Canny Edge Detector

Canny Algorithm

③ Convolution with 1D Gaussian masks in x and y-direction

$$G_{\sigma,0}(x) = \frac{1}{\sqrt{2\pi\sigma}} \cdot \exp\left(-\frac{x^2}{2\sigma^2}\right) \tag{8}$$

$$\frac{\partial G_{\sigma,0}(x,y)}{\partial x} = -\frac{x}{\sqrt{2\pi\sigma^3}} \cdot \exp\left(-\frac{(x^2+y^2)}{2\sigma^2}\right) \tag{9}$$

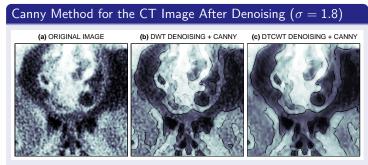
- Ombining of these two matrices
- Strong edges: pels value above the upper threshold
- Weak edges:
 - Pels value above the lower threshold
 - The gradient \equiv the direction of the strong edges in the neighborhood

EDGE DETECTION IN BIOMEDICAL IMAGES

E. Hošťálková, A. Procházka

Introduction

Image Denoising Analytic Wavelets Directional Selectivity DWT versus DTCWT Denoising Technique


Edge Detection Gradient Masks

Canny Detec

нмм

Conclusions

Further Reading

Denoising by wavelet shrinkage:

- DWT: 16-tap symlet filters, 4 levels
- DTCWT: 16-tap q-shift filters, 4 levels

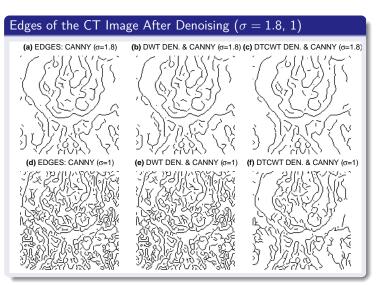
EDGE DETECTION IN BIOMEDICAL IMAGES

E. Hošťálková, A. Procházka

Introduction

Image Denoising Analytic Wavelets Directional Selectivity DWT versus DTCWT Denoising Technique

Edge Detection


Gradient Masks

Canny Detect

нмм

Conclusions

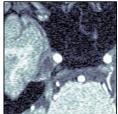
Further Reading

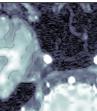
EDGE DETECTION IN BIOMEDICAL IMAGES

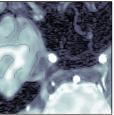
E. Hošťálková, A. Procházka

Introduction

Image Denoising Analytic Wavelets Directional Selectivity DWT versus DTCWT Denoising Technique


Edge Detection Gradient Masks


HMM


Conclusions

Further Reading

Denoising by wavelet shrinkage:

- DWT: 14-tap symlet filters, 3 levels
- DTCWT: 14-tap q-shift filters, 3 levels

Table of Contents

EDGE DETECTION IN BIOMEDICAL IMAGES

E. Hošťálková, A. Procházka

Introduction

- Image Denoising Analytic Wavelets Directional Selectivity DWT versus DTCWT Denoising Technique
- Edge Detection Gradient Masks Canny Detector
- нмм
- Conclusions
- Further Reading

Introduction

Image Denoising

- Analytic Wavelets
- Directional Selectivity
- DWT versus DTCWT
- Denoising Technique

3 Edge Detection

- Gradient Masks
- Canny Edge Detector
- Hidden Markov Models (HMM)

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

4 Conclusions

Hidden Markov Models (HMM)

EDGE DETECTION IN BIOMEDICAL IMAGES

E. Hošťálková, A. Procházka

Introduction

- Image Denoising Analytic Wavelets Directional Selectivity DWT versus DTCWT Denoising Technique
- Edge Detection Gradient Masks Canny Detector
-
- Conclusions
- Further Reading

Hidden Markov Models (HMM)

- The focus of our future work on edge detection
- Utilizing sparsity and persistence of the DTCWT coefficients (shift invariant)

Sparsity

- Many small coefficients from smooth regions
- Fewer large coefficients corresponding to singularities
- The marginal distribution of the coefficients within each scale modeled as a 2-component mixture of distributions (2 values of variance)

Persistence

• Strong parent-child relations - the relative size of a coefficient propagates through its children across scale

Hidden Markov Models (HMM)

EDGE DETECTION IN BIOMEDICAL IMAGES

E. Hošťálková, A. Procházka

Introduction

- Image Denoising Analytic Wavelets Directional Selectivity DWT versus DTCWT Denoising Technique
- Edge Detection Gradient Masks Canny Detector
- Canny Det
- Conclusions
- Further Reading

Hidden Markov Models (HMM)

- The focus of our future work on edge detection
- Utilizing sparsity and persistence of the DTCWT coefficients (shift invariant)

Sparsity

- Many small coefficients from smooth regions
- Fewer large coefficients corresponding to singularities
- The marginal distribution of the coefficients within each scale modeled as a 2-component mixture of distributions (2 values of variance)

Persistence

• Strong parent-child relations - the relative size of a coefficient propagates through its children across scale

Hidden Markov Models (HMM)

EDGE DETECTION IN BIOMEDICAL IMAGES

E. Hošťálková, A. Procházka

Introduction

- Image Denoising Analytic Wavelets Directional Selectivity DWT versus DTCWT Denoising Technique
- Edge Detection Gradient Masks Canny Detector
- нмм
- Conclusions
- Further Reading

Hidden Markov Models (HMM)

- The focus of our future work on edge detection
- Utilizing sparsity and persistence of the DTCWT coefficients (shift invariant)

Sparsity

- Many small coefficients from smooth regions
- Fewer large coefficients corresponding to singularities
- The marginal distribution of the coefficients within each scale modeled as a 2-component mixture of distributions (2 values of variance)

Persistence

• Strong parent-child relations - the relative size of a coefficient propagates through its children across scale

Conclusions

Conclusions

EDGE DETECTION IN BIOMEDICAL IMAGES

E. Hošťálková, A. Procházka

Introduction

- Image Denoising Analytic Wavelets Directional Selectivity DWT versus DTCWT Denoising Technique
- Edge Detection Gradient Masks Canny Detector HMM
- Conclusions

Further Reading

• DTCWT outperformes the DWT

- Approximate shift invariance
- Steady values of the magnitude across scale
- Phase representation of edges orientation
- Improved directional selectivity in higher dimensions

Both transforms

- For noise reduction in biomedical images
- By soft wavelet shrinkage
- Edge detection for the resulting images:
 - Gradient approximating masks
 - Canny detector
 - Possible use of the DTCWT through hidden Markov models

Conclusions

Conclusions

EDGE DETECTION IN BIOMEDICAL IMAGES

E. Hošťálková, A. Procházka

Introduction

- Image Denoising Analytic Wavelets Directional Selectivity DWT versus DTCWT Denoising Technique
- Edge Detection Gradient Masks Canny Detector
- нмм
- Conclusions

Further Reading

• DTCWT outperformes the DWT

- Approximate shift invariance
- Steady values of the magnitude across scale
- Phase representation of edges orientation
- Improved directional selectivity in higher dimensions

• Both transforms

- For noise reduction in biomedical images
- By soft wavelet shrinkage
- Edge detection for the resulting images:
 - Gradient approximating masks
 - Canny detector
 - Possible use of the DTCWT through hidden Markov models

Conclusions

Conclusions

EDGE DETECTION IN BIOMEDICAL IMAGES

E. Hošťálková, A. Procházka

Introduction

- Image Denoising Analytic Wavelets Directional Selectivity DWT versus DTCWT Denoising Technique
- Edge Detection Gradient Masks Canny Detector
- HMM
- Conclusio

Further Reading

• DTCWT outperformes the DWT

- Approximate shift invariance
- Steady values of the magnitude across scale
- Phase representation of edges orientation
- Improved directional selectivity in higher dimensions

Both transforms

- For noise reduction in biomedical images
- By soft wavelet shrinkage
- Edge detection for the resulting images:
 - Gradient approximating masks
 - Canny detector
 - Possible use of the DTCWT through hidden Markov models

Further Reading

EDGE DETECTION IN BIOMEDICAL IMAGES

E. Hošťálková, A. Procházka

Introduction

Image Denoising Analytic Wavelets Directional Selectivity DWT versus DTCWT Denoising Technique

Edge Detection Gradient Masks Canny Detector HMM

Conclusions

Further Reading

 I. W. Selesnick and R. G. Baraniuk and N. G. Kingsbury. The Dual-Tree Complex Wavelet Transform. IEEE Signal Processing Magazine, 22(6): 123–151, IEEE, 2005.

M. Petrou and P. Bosdogiann. Image Processing. John Wiley & Sons, 2000.

R. M. Rangayyan. *IBiomedical Image Analysis.* Biomedical Engineering Series, CRC Pres, U.S.A., 2005.

M. S. Crouse and R. D. Nowak and R. G. Baraniuk. Wavelet-Based Statistical Signal Processing Using Hidden Markov Models.

IEEE Transactions on Signal Processing, 46(4): 886–90, IEEE, 1998.

D. B. Percival and A. T. Walden.

Wavelet Methods for Time Series Analysis.

Cambridge Series in Statistical and Probabilistic Mathematics. Cambridge University Press, U.S.A., 2006. $\langle \sigma \rangle = \langle \sigma \rangle = \langle \sigma \rangle$