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Abstract

In the field of signal processing, the Discrete Wavelet Transform (DWT) has
proved very useful for recovering signals from additive Gaussian noise by the
means of wavelet thresholding. During this procedure, wavelet coefficients with
small magnitudes are set to zero, however, usually without taking into account
their mutual dependencies. The Hidden Markov Models (HMM) are designed
to capture such dependencies by modelling the statistical properties of the co-
efficients. In this paper, we process a testing intensity image with added Gaus-
sian noise. To compute the hidden Markov models parameters, we employ the
iterative expectation-maximization (EM) training algorithm. The outcome of
the training process is used for estimation of the noise-free image which is re-
constructed from the recalculated wavelet coefficients. The above technique is
compared with the NormalShrink method of adaptive threshold computation
and outperforms this technique in our experiments.

1 Introduction

The Discrete Wavelet Transform (DWT) is broadly and successfully used for signal estimation
by wavelet shrinkage [3]. The shrinkage algorithm consists of wavelet decomposition of the noisy
signal observation, thresholding the wavelet coefficients with an estimated threshold value, and
subsequent wavelet reconstruction using the altered wavelet coefficients along with the preserved
scaling coefficients.

The shrinkage technique may vary according to the thresholding function (hard, soft, or
other), the formula for the threshold calculation, and whether it is applied globally for all wavelet
coefficients or adaptively using different thresholds for different levels or subbands. In general,
shrinkage methods ignore mutual dependencies between DWT coefficients, and thus assume the
DWT to de-correlate signals thoroughly. This, however, is not a correct assumption as shown
in [2], since the DWT coefficients reveal persistence and clustering [3].
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Figure 1: The persistence property of wavelet coefficients. In the 2-dimensional decomposition
hierarchy, each parent coefficient p(i) has four children i. The HMT model connects the hidden
states Si and Sp(i) rather then the actual coefficients values wi and wp(i)



 (a) ORIGINAL  (b) CUT OUT

Figure 2: Mandrill image (a) and a 240 × 240 cut out normalized to the intensity range 〈0; 1〉
(b)

The persistence property denotes strong parent-child relations in the wavelet decomposi-
tion hierarchy. The relative size of the coefficients propagates through their children across scale
as outlined in Fig. 1. Due to the clustering property, we may expect large (or small) coefficients
in the neighborhood of a large (or small) coefficient within the same scale.

The latter property is captured by the hidden Markov chains models while ignoring the
former. For our purposes, we choose a modelling framework which reflects both these properties
- the Hidden Markov Trees (HMT). Apart from noise reduction discussed in this paper, the HMT
models are widely used in edge detection, texture recognition, and other applications [2, 1, 5].

1.1 HMT of Wavelet Coefficients

As said above, the HMT models are designed to capture mutual wavelet coefficients dependencies
through modelling the statistical properties of the coefficients. Markovian dependencies tie
together the hidden states assigned to the coefficients rather than their values, which are thus
treated as independent of all variables given the hidden state.

For real images, histograms of the DWT coefficients reveal sparsity, which means that
the shape of the marginal probability distribution for each wavelet coefficient value is peaky
and heavy tailed with relatively few large coefficients corresponding to singularities and many
small ones from smooth regions. Hence the marginal distribution of each coefficient node i is
modeled as a mixture of Gaussian conditional distributions G(µi,m, σ2

i,m). In many applications,
a 2-component mixture proves sufficient.

As displayed in Fig. 3, each of the two conditional distributions (with a smaller variance
σ2

i,1 and a larger variance σ2
i,2) is associated with one of the two hidden states S taking on values

m = 1, 2 with the probability mass function (pmf) p(Si = m). Then, the overall density function
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Figure 3: Non-Gaussian marginal densities for all subbands at level 1 obtained via the HMT
models. A histogram of the LH coefficients (a), HL coefficients (b), and HH coefficients (c)
along with the respective conditional densities of the two states (for the noise mean µn = 0.05
and variance σ2

n = 0.03 in the spatial domain)



is given as

f(wi) = p(Si = m) f(wi |Si = m) (1)

where the conditional probability f(wi |Si = m) of the coefficients value wi given the state Si

corresponds to the Gaussian distribution

f(wi |Si = m) =
1

√

2πσ2
i,m

exp

(

−
(wi − µi,m)2

2σ2
i,m

)

(2)

For images, each parent coefficient in the HMT hierarchy has four children. Owing to persistence,
the relative size of the coefficients propagates across scale. To describe these dependencies, the
2-state HMT model uses the state transition probabilities f(Si = m |Sp(i) = n)) between the
hidden states Si of the children given that of the parent Sp(i)

f(Si = m |Sp(i) = n)) =

(

f(Si = 1 |Sp(i) = 1) f(Si = 1 |Sp(i) = 2)

f(Si = 2 |Sp(i) = 1) f(Si = 2 |Sp(i) = 2)

)

(3)

where according to the persistence assumption f(Si = 1 |Sp(i) = 1) ≫ f(Si = 2 |Sp(i) = 1) and
f(Si =2 |Sp(i) =2) ≫ f(Si =1 |Sp(i) =2).

In this paper, the DWT wavelet coefficients are modeled using three independent HMT
models. In this way, we tie together all trees belonging to each of the three detail subbands to
decrease the computation complexity and prevent overfitting to the data. The model parameters
θ are computed via the iterative expectation-maximization (EM) training algorithm described
in detail in [2]. The algorithm consists of two steps. In the E step, the state information
propagates upwards and downwards through the tree. In the M step, the model parameters θ

are recalculated and then input into next iteration.

1.2 Noise Reduction

In this paper, we deal with denoising of signals containing additive Independent Identically
Distributed (iid) Gaussian noise. In the wavelet domain, a noisy wavelet coefficient observation
wi is given by

wi = yi + ni (4)

where y stands for the desired noise-free signal and n for iid Gaussian noise.

Each of the three HMT models trained in the previous section is exploited for image noise
reduction as follows. As derived by the chain rule of conditional expectation, the conditional
mean estimate of yi, given the noise observation wi and the state si [2]

E[yi |w, θ] =
M
∑

m=1

p(Si = m |w, θ) ·
σ2

i,m

σ2
n + σ2

i,m

· wi (5)

The hidden state probabilities p(Si |w, θ) given the parameters vector θ and observed wavelet
coefficients values w are, same as the variance σ2

i,m, common to all coefficients in a given subband.
As the only unknown remains the noise variance σ2

n, which can be obtained through the Median
Absolute Deviation (MAD) estimator [3]

σ̂n
mad =

median{|whh1
1 |, |whh1

2 |, . . . , |whh1
N/4|}

0.6745
(6)

where N is the image size and |whh1
n | is the absolute value of the n-th coefficient of the HH1

subband, which contains the highest frequencies, and thus is supposed to be noise dominated.
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 (a) SCALING AND WAVELET COEFFICIENTS − 2 LEVELS, HMT
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Figure 4: Altering wavelet coefficients by exploiting the HMT model (a) and the NormalShrink
threshold estimate (b). The Haar DWT coefficients of the noisy image are displayed in green
and the altered ones in blue (for the same noisy image as in Fig. 3)

The constant in the denominator applies to iid Gaussian noise. The median approach is robust
against large deviations of noise variance.

Now, we are able to compute new values of the wavelet coefficients and use them for DWT
reconstruction while keeping the scaling coefficients unchanged as depicted in Fig. 4a.

Fig. 4b displays coefficients processed by the NormalShrink method proposed by [4]. This
shrinkage technique is subband-adaptive, uses relation (6) for the noise variance estimation, and
employs the soft thresholding function. Fig. 2 shows a cut out of the mandrill image which we
use as testing data.

 (a) ORIGINAL  (b) NOISY  (c) DENOISED

Figure 5: Noise reduction via the HTM models. The original image (the cut out from the
mandrill image) (a), the same image with additional iid Gaussian noise (µn = 0.05, σ2

n = 0.03)
(b), and the result of HMT-based denoising (c)



 (a) NOISY IMAGE  (b) DENOISED USING NS  (c) DENOISED USING HMT

Figure 6: Noise reduction via NormalShrink and the HTM models. The noisy image (the same
one as in 5) (a), and the result of NormalShrink (b), and HMT-based denoising (c)

1.3 Results

Our experiments, nevertheless limited to only one testing image, verified the expectations de-
rived form literature [2]. The comparison of the HMT-based and the NormalShrink method is
summarized in the following table.

Table 1: Residual Images Parameters in Our Noise Reduction Experiments

Noise NormalShrink HMT

µn [10−2] σ2
n [10−2] µ [10−2] σ2 [10−2] µ [10−2] σ2 [10−2]

5.00 3.00 0.04 2.18 1.12 0.60
0.00 1.00 0.00 1.12 0.16 0.32
5.00 1.00 0.46 1.04 1.00 0.32

In case of the HMT-based method, we decomposed the signal to the second level. The
NormalShrink technique performed better for single-level decomposition according both to nu-
merical and visual evaluation.

Fig. 6 displays an example of using of the both denoising techniques. We may also visually
compare the denoising results in Fig. 7 and conclude, that the HMT-based technique outperforms
the other method in preserving image edges.

 (a) ORIGINAL  (b) ABS. DIFFERENCE NS  (c) ABS. DIFFERENCE HMT

Figure 7: Absolute values difference images for the NormalShrink and the HTM denoising
experiments. The original image (a), and the result of NormalShrink method (normalized to
the range 〈0; 1〉) (b), and the HMT method (displayed proportionally to the previous image) (c)



In our future work, we intend to exploit the HMT models for noise reduction in biomedical
images. Instead od the DWT, it will be advantageous to employ the Dual-Tree Complex Wavelet
Transform (DTCWT) [5], which is approximately shift invariant and its coefficients magnitudes
do not oscillate across scale at the location of a singularity and provides near linear phase
encoding.
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