Eva Hostalkova

WAVELET TRANSFORM

Eva Hostalkova

Dept of Computing and Control Engineering

Institute of Chemical Technology, Prague

ATHENS Nov 2009

< □ > < □ > < □ > < □ > < □ >

Eva Hostalkova

Introduction to Wavelet Transform

Fourier Transform

- Continuous Fourier Transform
- Short-Time Fourier Transform (STFT)

3 Wavelet Transform

- Multi-Resolution Analysis (MRA)
- Continuous Wavelet Transform (CWT)
- Wavelet Functions Properties

4 Discrete Wavelet Transform

- Discrete and Continuous Wavelet Transform
- Subband Coding Algorithm
- Matrix Interpretation

5 Wavelet Transform Applications

- Discontinuity Detection in the ECG Signal
- Image Compression
- Image Segmentation
- Noise Reduction by Wavelet Shrinkage

Eva Hostalkova

Introduction to Wavelet Transform

2 Fourier Transform

- Continuous Fourier Transform
- Short-Time Fourier Transform (STFT)

3 Wavelet Transform

- Multi-Resolution Analysis (MRA)
- Continuous Wavelet Transform (CWT)
- Wavelet Functions Properties

4 Discrete Wavelet Transform

- Discrete and Continuous Wavelet Transform
- Subband Coding Algorithm
- Matrix Interpretation

5 Wavelet Transform Applications

- Discontinuity Detection in the ECG Signal
- Image Compression
- Image Segmentation
- Noise Reduction by Wavelet Shrinkage

Eva Hostalkova

Introduction to Wavelet Transform

- 2 Fourier Transform
 - Continuous Fourier Transform
 - Short-Time Fourier Transform (STFT)

3 Wavelet Transform

- Multi-Resolution Analysis (MRA)
- Continuous Wavelet Transform (CWT)
- Wavelet Functions Properties
- 4 Discrete Wavelet Transform
 - Discrete and Continuous Wavelet Transform
 - Subband Coding Algorithm
 - Matrix Interpretation

5 Wavelet Transform Applications

- Discontinuity Detection in the ECG Signal
- Image Compression
- Image Segmentation
- Noise Reduction by Wavelet Shrinkage

Eva Hostalkova

Introduction to Wavelet Transform

- 2 Fourier Transform
 - Continuous Fourier Transform
 - Short-Time Fourier Transform (STFT)

3 Wavelet Transform

- Multi-Resolution Analysis (MRA)
- Continuous Wavelet Transform (CWT)
- Wavelet Functions Properties

4 Discrete Wavelet Transform

- Discrete and Continuous Wavelet Transform
- Subband Coding Algorithm
- Matrix Interpretation

5 Wavelet Transform Applications

- Discontinuity Detection in the ECG Signal
- Image Compression
- Image Segmentation
- Noise Reduction by Wavelet Shrinkage

Eva Hostalkova

Introduction to Wavelet Transform

- 2 Fourier Transform
 - Continuous Fourier Transform
 - Short-Time Fourier Transform (STFT)

3 Wavelet Transform

- Multi-Resolution Analysis (MRA)
- Continuous Wavelet Transform (CWT)
- Wavelet Functions Properties

4 Discrete Wavelet Transform

- Discrete and Continuous Wavelet Transform
- Subband Coding Algorithm
- Matrix Interpretation

5 Wavelet Transform Applications

- Discontinuity Detection in the ECG Signal
- Image Compression
- Image Segmentation
- Noise Reduction by Wavelet Shrinkage

Introduction

Wavelet Transform

Eva Hostalkova

Introduction

Fourier Transform Continuous Fourier Transform STFT

- Wavelet Transform
- CVVI
- Wavelets Properties

DWT

- DWT and CWT
- Subband Coding
- Matrix Interpretation

WT Applications

- Discontinuity Detection Image Compression Image Segmentation Noise Reduction
- References

Introduction to Wavelet Transform

Fourier Transform

- Continuous Fourier Transform
- Short-Time Fourier Transform (STFT)

Wavelet Transform

- Multi-Resolution Analysis (MRA)
- Continuous Wavelet Transform (CWT)
- Wavelet Functions Properties

Discrete Wavelet Transform

- Discrete and Continuous Wavelet Transform
- Subband Coding Algorithm
- Matrix Interpretation

Wavelet Transform Applications

- Discontinuity Detection in the ECG Signal
- Image Compression
- Image Segmentation
- Noise Reduction by Wavelet Shrinkage

イロト イヨト イヨト イヨ

Introduction

Wavelet Transform

Eva Hostalkova

Introduction

- Fourier Transform Continuous Fourier Transform STFT
- Wavelet Transform
- CWT
- Wavelets Properties

DWT

- DWT and CWT
- Subband Coding
- Matrix Interpretation

WT Applications

- Discontinuity Detection Image Compression Image Segmentation Noise Reduction
- References

Wavelet Transform (WT) History

- 19th cent. Jean B. Fourier: frequency analysis
- 1909 Alfred Haar: Haar function (not yet WT)
- since 1990s WT related research and applications

Vavelet Functions

- Wavelet = a small wave, i.e. an oscillatory function zero outside a bounded interval (having compact support)
- Some real, some complex
- Designed as much smooth and symmetric as possible
- Seldom analytic expression, mostly parametric (e.g. Morlet, Haar or Daubechies fcns)

Introduction

Wavelet Transform

Eva Hostalkova

Introduction

- Fourier Transform Continuous Fourier Transform STFT
- Wavelet Transform
- CWT
- Wavelets Properties

DWT

- DWT and CWT
- Subband Coding
- Matrix Interpretation

WT Applications

- Discontinuity Detection Image Compression Image Segmentation
- Noise Reduction
- reduction
- References

Wavelet Transform (WT) History

- 19th cent. Jean B. Fourier: frequency analysis
- 1909 Alfred Haar: Haar function (not yet WT)
- since 1990s WT related research and applications

Wavelet Functions

- Wavelet = a small wave, i.e. an oscillatory function zero outside a bounded interval (having compact support)
- Some real, some complex
- Designed as much smooth and symmetric as possible
- Seldom analytic expression, mostly parametric (e.g. Morlet, Haar or Daubechies fcns)

Eva Hostalkova

Introduction

Fourier Transform

STFT

Wavelet Transform

CWT

Wavelets Properties

DWT

- DWT and CWT
- Subband Coding
- Matrix Interpretation

WT Applications

- Discontinuity Detection Image Compression Image Segmentation Noise Reduction
- References

Introduction

WT Analysis

• For non-stationary signals (with time-varying frequency content)

NT Applications in Signal Processing

- Noise reduction
- Detection of trends and discontinuities in higher derivatives
- Compression (JPEG2000, FBI fingerprints database)
- Image edge detection
- Watermarking
- Features extraction for image segmentation

<ロト < 回 > < 回 > < 回 > < 回 >

Eva Hostalkova

Introduction

Fourier Transform Continuous Fourier Transform

Wavelet Transform

CWT

Wavelets Properties

DWT

DWT and CWT

Subband Coding

Matrix Interpretation

WT Applications

Discontinuity Detection Image Compression Image Segmentation

Noise Reduction

References

Introduction

WT Analysis

For non-stationary signals (with time-varying frequency content)

WT Applications in Signal Processing

- Noise reduction
- Detection of trends and discontinuities in higher derivatives
- Compression (JPEG2000, FBI fingerprints database)
- Image edge detection
- Watermarking
- Features extraction for image segmentation

<ロト < 回 > < 回 > < 回 > < 回 >

Fourier Transform

Wavelet Transform

Eva Hostalkova

Introduction

Fourier Transform

Continuous Fourier Transform STFT

Wavelet Transform MRA

Wavelets Properties

DWT

DWT and CWT

Subband Coding

Matrix Interpretation

WT Applications

Discontinuity Detection Image Compression Image Segmentation Noise Reduction

References

Introduction to Wavelet Transform

2 Fourier Transform

- Continuous Fourier Transform
- Short-Time Fourier Transform (STFT)

Wavelet Transform

- Multi-Resolution Analysis (MRA)
- Continuous Wavelet Transform (CWT)
- Wavelet Functions Properties

Discrete Wavelet Transform

- Discrete and Continuous Wavelet Transform
- Subband Coding Algorithm
- Matrix Interpretation

5 Wavelet Transform Applications

- Discontinuity Detection in the ECG Signal
- Image Compression
- Image Segmentation
- Noise Reduction by Wavelet Shrinkage

イロト イヨト イヨト イヨ

Eva Hostalkova

Introduction

Fourier Transform

Continuous Fourier Transform STFT

Wavelet Transform MRA CWT

Wavelets Properties

DWT

DWT and CWT

Subband Coding

Matrix Interpretation

WT Applications

Discontinuity Detection Image Compression Image Segmentation Noise Reduction

References

Continuous Fourier Transform (FT)

- Decomposes signals (real or complex) into the orthogonal basis of complex exponentials e^{-j2πft} of frequencies f
- FT for the angular frequency $\omega = 2\pi f$ and time *t*:

$$X(\omega) = \int_{-\infty}^{+\infty} x(t) e^{-j\omega t} dt \qquad (1)$$

where $X(\omega)$ is the Fourier transform of the function x(t)

• Converges for a piece-wise smooth x(t) or finite energy:

$$\int_{-\infty}^{\infty} |x(t)|^2 dt < \infty$$
 (2)

<ロト < 同ト < ヨト < ヨ)

Inverse F

$$x(t) = \frac{1}{2\pi} \int_{-\infty}^{+\infty} X(\omega) e^{j\omega t} d\omega \qquad ($$

Eva Hostalkova

Introduction

Fourier Transform

Continuous Fourier Transform STFT

Wavelet Transform MRA CWT

Wavelets Properties

DWT

DWT and CWT

Subband Coding

Matrix Interpretation

WT Applications

Discontinuity Detection Image Compression Image Segmentation Noise Reduction

References

Continuous Fourier Transform (FT)

- Decomposes signals (real or complex) into the orthogonal basis of complex exponentials e^{-j2πft} of frequencies f
- FT for the angular frequency $\omega = 2\pi f$ and time *t*:

$$X(\omega) = \int_{-\infty}^{+\infty} x(t) e^{-j\omega t} dt \qquad (1)$$

where $X(\omega)$ is the Fourier transform of the function x(t)

• Converges for a piece-wise smooth x(t) or finite energy:

$$\int_{-\infty}^{\infty} |x(t)|^2 dt < \infty$$
 (2)

イロト イヨト イヨト イヨト

Inverse FT

$$x(t) = \frac{1}{2\pi} \int_{-\infty}^{+\infty} X(\omega) e^{j\omega t} d\omega$$
 (3)

Eva Hostalkova

Introduction

Fourier Transform

Continuous Fourier Transform

Wavelet Transform

CWT

Wavelets Properties

DWT

DWT and CWT

Subband Coding

Matrix Interpretation

WT Applications

Discontinuity Detection Image Compression Image Segmentation Noise Reduction

References

FT Analysis of Non-Stationary Signals

 Discrete FT for the discrete freq. index k=0,1,...,N-1 and discrete time n (for the unit sampling frequency)

$$X(k) = \sum_{n=0}^{N-1} x(n) e^{-j2\pi kn/N}$$
(4)

Mummil

0.1

0.2 0.3

frequency

Winny

04

500

Eva Hostalkova (ICT, Prague)

-0.5

100 200 300 400

time

Fourier Transform STFT

Wavelet Transform

Eva Hostalkova

Introduction

Fourier Transform

Continuous Fourier Transform

Wavelet Transform

CWT

Wavelets Properties

DWT

DWT and CWT

Subband Coding

Matrix Interpretation

WT Applications

Discontinuity Detection Image Compression Image Segmentation Noise Reduction

References

Discrete Short-Time Fourier Transform (STFT)

- Non-stationary signal analysis (localizes frequency components within time intervals)
- STFT of a discrete signal x(n) for k = 0, 1, ..., N-1:

$$X(u,k) = \sum_{n=0}^{N-1} x(n) w(n-u) e^{-j2\pi k n/N}$$
 (5)

where u denotes the window position

Jncertainty (Heisenberg) Principle

$$\Delta T \,\Delta f = 1 \tag{6}$$

- $\Delta f = F_s/N$... frequency resolution (distance between adjacent spectral samples)
- $\Delta T = N T_s \dots$ time resolution (window length)
- N ... number of samples per window
- $F_s = 1/T_s \dots$ sampling frequency

Fourier Transform STFT

Wavelet Transform

Eva Hostalkova

Introduction

Fourier Transform

Continuous Fourier Transform

Wavelet Transform

CWT

Wavelets Properties

DWT

DWT and CWT

Subband Coding

Matrix Interpretation

WT Applications

Discontinuity Detection Image Compression Image Segmentation Noise Reduction

References

Discrete Short-Time Fourier Transform (STFT)

- Non-stationary signal analysis (localizes frequency components within time intervals)
- STFT of a discrete signal x(n) for k = 0, 1, ..., N-1:

$$X(u,k) = \sum_{n=0}^{N-1} x(n) w(n-u) e^{-j2\pi k n/N}$$
 (5)

where u denotes the window position

Uncertainty (Heisenberg) Principle

$$\Delta T \Delta f = 1 \tag{6}$$

- $\Delta f = F_s/N$... frequency resolution (distance between adjacent spectral samples)
- $\Delta T = N T_s \dots$ time resolution (window length)
- N . . . number of samples per window
- $F_s = 1/T_s \ldots$ sampling frequency

Eva Hostalkova

Introduction

Fourier Transform

Continuous Fourier Transform

Wavelet Transform MRA

Wavelets Properties

DWT

DWT and CWT

Subband Coding

Matrix Interpretation

WT Applications

Discontinuity Detection Image Compression Image Segmentation Noise Reduction

References

STFT

STFT - Uncertainty Tradeoff

Fourier Transform

Eva Hostalkova (ICT, Prague)

Eva Hostalkova

Introduction

Fourier Transform

Continuous Fourier Transform STFT

Wavelet Transform

MRA

CWT

Wavelets Properties

DWT

DWT and CWT

Subband Coding

Matrix Interpretation

WT Applications

Discontinuity Detection Image Compression Image Segmentation Noise Reduction

References

Wavelet Transform

Introduction to Wavelet Transform

2) Fourier Transform

- Continuous Fourier Transform
- Short-Time Fourier Transform (STFT)

3 Wavelet Transform

- Multi-Resolution Analysis (MRA)
- Continuous Wavelet Transform (CWT)
- Wavelet Functions Properties

Discrete Wavelet Transform

- Discrete and Continuous Wavelet Transform
- Subband Coding Algorithm
- Matrix Interpretation

5 Wavelet Transform Applications

- Discontinuity Detection in the ECG Signal
- Image Compression
- Image Segmentation
- Noise Reduction by Wavelet Shrinkage

イロト イヨト イヨト イヨ

Eva Hostalkova

Introduction

Fourier Transform

Continuous Fourier Transform STFT

Wavelet Transform

MRA

CWT

Wavelets Properties

DWT

DWT and CWT

Subband Coding

Matrix Interpretation

WT Applications

Discontinuity Detection Image Compression

Image Segmentation

Noise Reduction

References

Multi-Resolution Analysis (MRA)

- The wavelet transform deals with the uncertainty principle by MRA
- Analyzing signals at different frequency bands with different resolution:
 - Higher frequencies: good ΔT , poor Δf
 - Lower frequencies: good Δf , poor ΔT
- Convenient for most real-world signals composed of:
 - Long-lasting lower frequencies (approximations)
 - Short-lasting higher frequencies (details main information)

Eva Hostalkova

Introduction

Fourier Transform

Continuous Fourier Transform STFT

Wavelet Transform

CWT

Wavelets Properties

DWT

- DWT and CWT
- Subband Coding
- Matrix Interpretation

WT Applications

Discontinuity Detection Image Compression Image Segmentation Noise Reduction

References

Continuous Wavelet Transform (CWT)

- FT: correlation of a signal of finite energy with complex exponentials $e^{i2\pi ft}$ of different frequencies f
- WT: correlation of a signal of finite energy with delated and shifted versions ψ_{u,s} of the mother wavelet ψ:

$$\psi_{u,s}(t) = \frac{1}{\sqrt{s}} \psi\left(\frac{t-u}{s}\right) \tag{7}$$

.

- where u is the shift of ψ along the signal \rightarrow time
- and s is scale (dilation of $\psi \rightarrow$ the inverse of frequency)
- $1/\sqrt{s}$ ensures energy normalization
- CWT of the signal x(t): $W_x^{\psi}(s, u) = \langle x, \psi_{u,s} \rangle = \frac{1}{\sqrt{s}} \int_{-\infty}^{+\infty} x(t) \psi^*\left(\frac{t-u}{s}\right) dt$ (8)
 - where * denotes the complex conjugate pair
 and () stands for the input product
 - and $\langle \rangle$ stands for the inner produc

Eva Hostalkova

Introduction

Fourier Transform

Continuous Fourier Transform STFT

Wavelet Transform

CWT

Wavelets Properties

DWT

- DWT and CWT
- Subband Coding
- Matrix Interpretation

WT Applications

Discontinuity Detection Image Compression Image Segmentation Noise Reduction

References

Continuous Wavelet Transform (CWT)

- FT: correlation of a signal of finite energy with complex exponentials $e^{i2\pi ft}$ of different frequencies f
- WT: correlation of a signal of finite energy with delated and shifted versions ψ_{u,s} of the mother wavelet ψ:

$$\psi_{u,s}(t) = \frac{1}{\sqrt{s}} \psi\left(\frac{t-u}{s}\right) \tag{7}$$

- ${\, \bullet \,}$ where u is the shift of ψ along the signal \rightarrow time
- and s is scale (dilation of $\psi \rightarrow$ the inverse of frequency)
- $1/\sqrt{s}$ ensures energy normalization
- CWT of the signal x(t): $W_x^{\psi}(s, u) = \langle x, \psi_{u,s} \rangle = \frac{1}{\sqrt{s}} \int_{-\infty}^{+\infty} x(t) \psi^*\left(\frac{t-u}{s}\right) dt$ (8)
 - where * denotes the complex conjugate pair
 - and $\langle \rangle$ stands for the inner product

Wavelet Transform

Eva Hostalkova

Introduction

Fourier Transform

Continuous Fourier Transform STFT

Wavelet Transform

CWT

Wavelets Properties

DWT

DWT and CW

Subband Coding

Matrix Interpretation

WT Applications

Discontinuity Detection Image Compression Image Segmentation Noise Reduction

References

Eva Hostalkova (ICT, Prague)

<u>CWT Computation Procedure</u> (s=5)

Wavelet Transform

Eva Hostalkova

Introduction

Fourier Transform

Continuous Fourier Transform STFT

Wavelet Transform

CWT

Wavelets Properties

DWT

DWT and CWT

Subband Coding

Matrix Interpretation

WT Applications

Discontinuity Detection Image Compression Image Segmentation Noise Reduction

References

Eva Hostalkova

Introduction

Fourier Transform

Continuous Fourier Transform STFT

Wavelet Transform

CWT

Wavelets Properties

DWT

DWT and CWT Subband Coding

Matrix Interpretation WT Applications

Discontinuity Detection Image Compression Image Segmentation Noise Reduction

References

CWT Properties

• Linearity: implied by the properties of the inner product

• Shift invariance:

- A shift in the signal along the time axis
 → the equivalent shift of the wavelet coefficients without any changes
- Does not apply to the discrete WT (great drawback)

イロト イヨト イヨト イヨ

Figure: Comparison of DWT and nearly invariant complex WT (CWT is even better - completely shift invariant)

Wavelet Transform CWT

Wavelet Transform

Eva Hostalkova

Introduction

Fourier Transform

Continuous Fourier Transform STFT

Wavelet Transform

CWT

Wavelets Properties

DWT

DWT and CWT

Subband Coding

Matrix Interpretation

WT Applications

Discontinuity Detection Image Compression Image Segmentation Noise Reduction

References

Orthogonality and orthonormality

- Not necessary for wavelet analysis (biorthogonality for more freedom in wavelet filters construction)
- A set of shifted and dilated versions of the mother wavelet $\psi_{u,s}$, is orthonormal on the interval [a, b] when:

$$\langle \psi_{u,s}, \psi_{v,r} \rangle = \int_{a}^{b} \psi_{u,s}(t) \psi_{v,r}^{*}(t) dt = \begin{cases} 1 & \text{for } u = v, s = r \\ 0 & \text{otherwise} \end{cases}$$
(9)

• A set of $\psi_{u,s}$, is orthogonal on the interval [a, b] when:

$$\langle \psi_{u,s}, \psi_{v,r} \rangle = \int_{a}^{b} \psi_{u,s}(t) \, \psi_{v,r}^{*}(t) \, dt = \begin{cases} c & \text{for } u = v, s = r \\ 0 & \text{otherwise} \end{cases}$$
(10)
where c is a constant, * denotes a complex conjugate

< □ > < 同 > < 回 > < Ξ > < Ξ

Eva Hostalkova

Introduction

Fourier Transform

Continuous Fourier Transform STFT

Wavelet Transform

CWT

Wavelets Properties

DWT

DWT and CWT Subband Coding Matrix Interpretation

- WT Applications
- Discontinuity Detection Image Compression Image Segmentation Noise Reduction

References

Wavelet Functions Properties I

• Admissibility condition

$$\int_{-\infty}^{\infty} \frac{|\Psi(\omega)|^2}{|\omega|} \, d\omega < +\infty \tag{11}$$

- where $\Psi(\omega)$ is the FT of $\psi(t)$
- Required for no loss of information during the analysis nor the synthesis
- The basis do not have to be orthogonal

Consequences of Admissibility Condition

• Oscillatory function (zero mean):

$$\int_{-\infty}^{\infty} \psi(t) \, dt = 0 \tag{12}$$

- Band-pass spectrum ($\Psi(\omega)$ vanishes at $\omega = 0$):
 - $|\Psi(\omega)|^2|_{\,\omega=0} = 0 \tag{13}$

Eva Hostalkova

Introduction

Fourier Transform

Continuous Fourier Transform STFT

Wavelet Transform

CWT

Wavelets Properties

DWT

DWT and CWT Subband Coding

Matrix Interpretation

WT Applications

Discontinuity Detection Image Compression Image Segmentation

Noise Reduction

References

Wavelet Functions Properties I

Admissibility condition

$$\int_{-\infty}^{\infty} \frac{|\Psi(\omega)|^2}{|\omega|} \, d\omega < +\infty \tag{11}$$

- where $\Psi(\omega)$ is the FT of $\psi(t)$
- Required for no loss of information during the analysis nor the synthesis
- The basis do not have to be orthogonal

Consequences of Admissibility Condition

• Oscillatory function (zero mean):

$$\int_{-\infty}^{\infty} \psi(t) \, dt = 0 \tag{12}$$

• Band-pass spectrum ($\Psi(\omega)$ vanishes at $\omega = 0$):

$$|\Psi(\omega)|^2|_{\omega=0}=0 \tag{13}$$

Eva Hostalkova

Introduction

Fourier Transform

Continuous Fourier Transform STFT

Wavelet Transform

CWI

Wavelets Properties

DWT

DWT and CWT Subband Coding Matrix Interpretation

WT Applications

Discontinuity Detection Image Compression Image Segmentation Noise Reduction

References

Wavelet Functions Properties II

• Time dilation of ψ causes shift and compression of the magnitude frequency spectrum $|\Psi|$

NEWLAND WAVELET:

$$\psi(t) = \frac{1}{j \frac{\pi}{2} t} \left(e^{j \pi t} - e^{j \frac{\pi}{2} t} \right)$$

WAVELET SCALING & DILATION:

$$\psi_{u,s}(t) = \frac{1}{\sqrt{s}}\psi\left(\frac{t-u}{s}\right)$$

Eva Hostalkova (ICT, Prague)

Eva Hostalkova

Introduction

Fourier Transform

Continuous Fourier Transform STFT

Wavelet Transform

CWI

Wavelets Properties

DWT

DWT and CWT Subband Coding

Matrix Interpretation

WT Applications

Discontinuity Detection Image Compression Image Segmentation

Noise Reduction

References

Desired Wavelet Functions Properties

- Compact support (non-zero only on a restricted interval) not necessary
- Regularity:
 - Smoothness of ψ and vanishing of $|\Psi(\omega)|$ for large ω (small scales)
 - Vanishing moments concept (see literature)
- Symmetry (liner phase)

イロト イヨト イヨト イヨ

DWT

Wavelet Transform

Eva Hostalkova

Introduction

Fourier Transform

Continuous Fourier Transform STFT

Wavelet Transform

Wavelets Properties

DWT

DWT and CWT Subband Coding Matrix Interpretation

WT Applications

Discontinuity Detection Image Compression Image Segmentation

Noise Reduction

References

Introduction to Wavelet Transform

Fourier Transform

- Continuous Fourier Transform
- Short-Time Fourier Transform (STFT)

Wavelet Transform

- Multi-Resolution Analysis (MRA)
- Continuous Wavelet Transform (CWT)
- Wavelet Functions Properties

4 Discrete Wavelet Transform

- Discrete and Continuous Wavelet Transform
- Subband Coding Algorithm
- Matrix Interpretation

5 Wavelet Transform Applications

- Discontinuity Detection in the ECG Signal
- Image Compression
- Image Segmentation
- Noise Reduction by Wavelet Shrinkage

イロト イヨト イヨト イヨ

Eva Hostalkova

Introduction

Fourier Transform

Continuous Fourier Transform STFT

Wavelet Transform

CWT

Wavelets Properties

DWT

DWT and CWT

Subband Coding

Matrix Interpretation

WT Applications

Discontinuity Detection Image Compression Image Segmentation Noise Reduction

References

Discrete Wavelet Transform (DWT)

- CWT provides us with redundant signal representation
- DWT derive by critically sampling the CWT (great reduction in the number of dilations and shifts)

$$\psi_{u,s}(t) = \frac{1}{\sqrt{s}} \psi\left(\frac{t-u}{s}\right) \Rightarrow \psi_{j,k}(t) = \frac{1}{\sqrt{s_0^j}} \psi\left(\frac{t-k \tau_0 s_0^j}{s_0^j}\right)$$
(14)

Sampling on the Dyadic Grid

- $s_0 = 2 \Rightarrow$ the scale $s = 2^j$
- $\tau_0 = 1 \Rightarrow$ the time translation $u = k 2^j$
- *t* denotes time, *j*, *k* are integers

$$\psi_{j,k}(t) = \frac{1}{\sqrt{2^j}} \psi\left(\frac{t - k2^j}{2^j}\right)$$

ヘロト ヘロト ヘルト ヘルト

Eva Hostalkova

Introduction

Fourier Transform

Continuous Fourier Transform STFT

Wavelet Transform

CWT

Wavelets Properties

DWT

DWT and CWT

Subband Coding

Matrix Interpretation

WT Applications

Discontinuity Detection Image Compression Image Segmentation

Noise Reduction

References

Discrete Wavelet Transform (DWT)

- CWT provides us with redundant signal representation
- DWT derive by critically sampling the CWT (great reduction in the number of dilations and shifts)

$$\psi_{u,s}(t) = \frac{1}{\sqrt{s}} \psi\left(\frac{t-u}{s}\right) \Rightarrow \psi_{j,k}(t) = \frac{1}{\sqrt{s_0^j}} \psi\left(\frac{t-k\tau_0 s_0^j}{s_0^j}\right)$$
(14)

Sampling on the Dyadic Grid

- $s_0 = 2 \Rightarrow$ the scale $s = 2^j$
- $\tau_0 = 1 \Rightarrow$ the time translation $u = k 2^j$
- *t* denotes time, *j*, *k* are integers

$$\psi_{j,k}(t) = \frac{1}{\sqrt{2^j}} \psi\left(\frac{t-k2^j}{2^j}\right)$$

(15)

DWT DWT and CWT

Wavelet Transform

Eva Hostalkova

Introduction

Fourier Transform

Continuous Fourier Transform STFT

Wavelet Transform

MRA

CWT

Wavelets Properties

DWT

DWT and CW

Subband Coding

Matrix Interpretation

WT Applications

Discontinuity Detection Image Compression Image Segmentation

Noise Reduction

References

Wavelet and Scaling Filters

Wavelet Transform

Eva Hostalkova

Introduction

Fourier Transform

Continuous Fourier Transform STFT

Wavelet Transform

CWT

Wavelets Properties

DWT

DWT and CWT

Subband Coding

Matrix Interpretation

WT Applications

Discontinuity Detection Image Compression Image Segmentation Noise Reduction

References

The spectrum of the wavelet function corresponds to a high-pass filter (or a band-pass filter for higher levels)
The spectrum of the scaling function corresponds to a low pass filter

Wavelet and Scaling Filters

Wavelet Transform

Eva Hostalkova

Introduction

Fourier Transform

Continuous Fourier Transform STFT

Wavelet Transform

CWT

Wavelets Properties

DWT

DWT and CWT

Subband Coding

Matrix Interpretation

WT Applications

Discontinuity Detection Image Compression Image Segmentation Noise Reduction

References

- The spectrum of the wavelet function corresponds to a high-pass filter (or a band-pass filter for higher levels)
- The spectrum of the scaling function corresponds to a low-pass filter

Eva Hostalkova

Introduction

Fourier Transform

Continuous Fourier Transform STFT

Wavelet Transform

CWT

Wavelets Properties

DWT

DWT and CWT

Subband Coding

Matrix Interpretation

WT Applications

Discontinuity Detection Image Compression Image Segmentation Noise Reduction

References

Subband Coding Algorithm

CWT versus DWT

- Correlation
- Dilating the wavelets

Convolution

• Keeping filters the same and down-sampling the previous level output by 2

< □ > < □ > < □ > < □ > < □ >

Eva Hostalkova

Introduction

Fourier Transform

Continuous Fourier Transform STFT

Wavelet Transform

CWT

Wavelets Properties

DWT

DWT and CWT

Subband Coding

Matrix Interpretation

WT Applications

Discontinuity Detection Image Compression Image Segmentation Noise Reduction

References

Subband Coding Algorithm

CWT versus DWT

- Correlation
- Dilating the wavelets

Convolution

• Keeping filters the same and down-sampling the previous level output by 2

Wavelet Transform

Eva Hostalkova

Introduction

Fourier Transform Continuous Fourier Transform

STFT

Wavelet Transform

CWT

Wavelets Properties

DWT

DWT and CWT

Subband Coding

Matrix Interpretation

WT Applications

Discontinuity Detection Image Compression Image Segmentation Noise Reduction

References

Convolution and Downsampling by 2

• The taps of the high-pass filter h_d and the low-pass l_d filter are derived from the wavelet and the scaling function, resp., of a chosen family (e.g. Daubechies, symlets, etc.)

Convolution and Downsampling by 2

• Approximation coefficients of the first level

$$A_{1}[n] = \sum_{k=-\infty}^{\infty} l_{d}[k] \times [2n-k]$$
(16)

• Detail coefficients of the first level $D_1[n] = \sum_{k=-\infty}^{\infty} h_d[k] \times [2n-k]$ (17)

• The j-th level
$$A_j[n] = \sum_{k=-\infty}^{\infty} l_d[k] A_{j-1}[2n-k]$$
 (18)
 $D_j[n] = \sum_{k=-\infty}^{\infty} h_d[k] A_{j-1}[2n-k]$ (19)

Wavelet Transform

Eva Hostalkova

Introduction

Fourier Transform Continuous Fourier Transform

STFT

Wavelet Transform

CWT

Wavelets Properties

DWT

DWT and CWT

Subband Coding

Matrix Interpretation

WT Applications

Discontinuity Detection Image Compression

Image Segmentation

Noise Reduction

References

Convolution and Downsampling by 2

• The taps of the high-pass filter h_d and the low-pass l_d filter are derived from the wavelet and the scaling function, resp., of a chosen family (e.g. Daubechies, symlets, etc.)

Convolution and Downsampling by 2

• Approximation coefficients of the first level

$$A_{1}[n] = \sum_{k=-\infty}^{\infty} l_{d}[k] \times [2n-k]$$
(16)

• Detail coefficients of the first level $D_1[n] = \sum_{k=-\infty}^{\infty} h_d[k] \times [2n-k]$ (17)

• The j-th level
$$A_j[n] = \sum_{k=-\infty}^{\infty} l_d[k] A_{j-1}[2n-k]$$
 (18)
 $D_j[n] = \sum_{k=-\infty}^{\infty} h_d[k] A_{j-1}[2n-k]$ (19)

Wavelet Transform

Eva Hostalkova

Introduction

- Fourier Transform Continuous Fourier Transform
- Wavelet Transform

CWT

Wavelets Properties

DWT

DWT and CWT

Subband Coding

Matrix Interpretation

WT Applications

Discontinuity Detection Image Compression

Image Segmentation

Noise Reduction

References

Convolution and Downsampling by 2

• The taps of the high-pass filter h_d and the low-pass l_d filter are derived from the wavelet and the scaling function, resp., of a chosen family (e.g. Daubechies, symlets, etc.)

Convolution and Downsampling by 2

• Approximation coefficients of the first level

$$A_{1}[n] = \sum_{k=-\infty}^{\infty} l_{d}[k] \times [2n-k]$$
(16)

• Detail coefficients of the first level $D_1[n] = \sum_{k=-\infty}^{\infty} h_d[k] \times [2n-k]$ (17)

• The j-th level
$$A_j[n] = \sum_{k=-\infty}^{\infty} l_d[k] A_{j-1}[2n-k]$$
 (18)
 $D_j[n] = \sum_{k=-\infty}^{\infty} h_d[k] A_{j-1}[2n-k]$ (19)

Eva Hostalkova

Introduction

Fourier Transform

Continuous Fourier Transform STFT

Wavelet Transform

CVVI

Wavelets Properties

DWT

DWT and CWT

Subband Coding

Matrix Interpretation

WT Applications

Discontinuity Detection Image Compression Image Segmentation Noise Reduction

References

Subband Coding & the Frequency Spectrum

• Dilated by $2 \Rightarrow$ the spectrum is compressed and shifted

 Finite number of dilations ⇒ advantageous to use a low-pass filter - derived from the scaling function φ(t) (the counter part of the wavelet filter at each level creating a filter bank)

Eva Hostalkova

Introduction

Fourier Transform

Continuous Fourier Transform STFT

Wavelet Transform MRA

Wavelets Properties

DWT

DWT and CWT

Subband Coding

Matrix Interpretation

WT Applications

Discontinuity Detection Image Compression Image Segmentation Noise Reduction

References

Subband Coding & the Frequency Spectrum

イロト イヨト イヨト イヨ

• Dilated by $2 \Rightarrow$ the spectrum is compressed and shifted

• Finite number of dilations \Rightarrow advantageous to use a low-pass filter - derived from the scaling function $\phi(t)$ (the counter part of the wavelet filter at each level - creating a filter bank)

Wavelet Transform	DWT Matrix										
	• The Haar filters										
ntroduction	$l_d = 1/\sqrt{2} \cdot [1, 1]$										
Fourier Transform	α / [/]	()									
Continuous Fourier Transform STFT	$h_d = 1/\sqrt{2} \cdot [1, -1]$	(21)									
Vavelet Transform MRA	• DWT matrix for the Haar filters										
CWT Wavelets Properties	(110000)										
DWT	-1 1 0 0 0 0										
DWT and CWT Subband Coding	0 0 1 1 0 0										
Matrix Interpretation	$1 0 0 -1 1 \dots 0 0$	(22)									
NT Applications	$\mathbf{v}\mathbf{v} = \frac{1}{\sqrt{2}} \cdot \mathbf{v}$	(22)									
Discontinuity Detection											
Image Compression											
Image Segmentation											
Noise Reduction	$\begin{pmatrix} 0 & 0 & 0 & 0 & \dots & -1 & 1 \end{pmatrix}$										

Image Segr References

Introducti Fourier T Continuous Wavelet

Wavelets F DWT DWT and Subband (WT Appl Discontinu Image Com

- W includes both convolution and down-sampling by 2
- W is orthonormal \Rightarrow W \cdot W^T = I

/avelet Transform	DWT Matrix									
Eva Hostalkova	• The Haar filters									
ıction	$I_d =$	$1/\sqrt{2} \cdot [1, 1]$	(20)							
Transform	_	, , , ,	()							
ious Fourier Transform	$h_d = 1$	$1/\sqrt{2} \cdot [1, -1]$	(21)							
et Transform	• DWT matrix for the Haar filters									
ts Properties		. 0 0 0	0)							
	-1 1	. 00 0	0							
nd CWT	0.0) 1 1 0	0							
d Coding	1 0 0		õ							
Provention -	$\mathbf{W} = \frac{1}{\sqrt{2}} \cdot \begin{bmatrix} 0 & 0 \end{bmatrix}$	$0 -1 1 \dots 0$	0 (22)							
oplications	$\sqrt{2}$									
ompression			:							
Segmentation	0 0) 0 0 1	1							
leduction) 0 0 1	1							
nces		0 01	1 /							
	• Mingludge hath convolu	tion and down come	alian hu O							

DWT Matrix Interpretation

- W includes both convolution and down-sampling by 2 (the filters are shifted by 2 samples)
- W is orthonormal ⇒ W · W^T = I where I stands for the identity matrix

Introd Fourie Contin STFT Wavel

Wavele DWT DWT Subban Matrix WT A Discon Image Image Noise I Refere

DWT Matrix Interpretation

DWT of Signal x Using the Haar Filters

Wavelet Transform

Eva Hostalkova

Introduction

Fourier Transform

Continuous Fourier Transform STFT

Wavelet Transform

CWT

Wavelets Properties

DWT

DWT and CWT

Subband Coding

Matrix Interpretati

WT Applications

Discontinuity Detection Image Compression Image Segmentation Noise Reduction

References

$\frac{1}{\sqrt{2}}$	$\begin{pmatrix}1\\-1\\0\\0\end{pmatrix}$	1 1 0 0	0 0 1 -1	0 0 1 1	· · · · · · · ·	0 0 0 0	0 0 0 0	$ \begin{pmatrix} x(0) \\ x(1) \\ x(2) \\ x(3) \end{pmatrix} $	_	$\left(\begin{array}{c} A_{1}(0) \\ D_{1}(0) \\ A_{1}(1) \\ D_{1}(1) \end{array}\right)$	
	: 0 0	: 0 0	: 0 0	: 0 0	•••• ••••	: 1 -1	: 1 1)	$\begin{pmatrix} \vdots \\ x(N-1) \\ x(N) \end{pmatrix}$		$ \begin{vmatrix} \vdots \\ A_1(\frac{N}{2}-1) \\ D_1(\frac{N}{2}-1) \end{vmatrix} $	

WT Decomposition and Reconstruction

Signal decomposition

$$\mathbf{N} \cdot \mathbf{x} = \mathbf{w} \tag{23}$$

- Signal reconstruction
- $\mathbf{x} = \mathbf{W}^{-1} \cdot \mathbf{w} \tag{24}$
- $\bullet\,$ Signal reconstruction for the orthonormal DWT

$$\mathbf{x} = \mathbf{W}^{\mathsf{T}} \cdot \mathbf{w} \tag{25}$$

DWT Matrix Interpretation

DWT of Signal x Using the Haar Filters

Wavelet Transform

Eva Hostalkova

Introduction

Fourier Transform

Continuous Fourier Transform STFT

Wavelet Transform

CWT

Wavelets Properties

DWT

DWT and CWT

Subband Coding

Matrix Interpretatio

WT Applications

Discontinuity Detection Image Compression Image Segmentation Noise Reduction

References

$\frac{1}{\sqrt{2}}$	$\begin{pmatrix}1\\-1\\0\\0\end{pmatrix}$	1 1 0 0	0 0 1 -1	0 0 1 1	· · · · · · · · · · ·	0 0 0 0	0 0 0 0	$ \begin{pmatrix} x(0) \\ x(1) \\ x(2) \\ x(3) \end{pmatrix} $	_	$\left(egin{array}{c} A_1(0) \ D_1(0) \ A_1(1) \ D_1(1) \end{array} ight)$	
	: 0 0	: 0 0	: 0 0	: 0 0	•••• ••••	: 1 -1	: 1 1 /	$\left(\begin{array}{c} \vdots \\ x(N-1) \\ x(N) \end{array}\right)$		$ert rac{ert}{N} A_1(rac{N}{2}\!-\!1) \ D_1(rac{N}{2}\!-\!1) ight)$	

DWT Decomposition and Reconstruction

Signal decomposition

$$\mathbf{N} \cdot \mathbf{x} = \mathbf{w} \tag{23}$$

- Signal reconstruction
- $\mathbf{x} = \mathbf{W}^{-1} \cdot \mathbf{w} \tag{24}$
- Signal reconstruction for the orthonormal DWT

$$\mathbf{x} = \mathbf{W}^{\mathbf{T}} \cdot \mathbf{w} \tag{25}$$

Eva Hostalkova

Introduction

Fourier Transform

Continuous Fourier Transform STFT

Wavelet Transform

CWT

Wavelets Properties

DW1

DWT and CWT

Subband Coding

Matrix Interpretation

WT Applications

Discontinuity Detection

Image Compression

Image Segmentation

Noise Reduction

References

WT Applications

1 Introduction to Wavelet Transform

Fourier Transform

- Continuous Fourier Transform
- Short-Time Fourier Transform (STFT)

Wavelet Transform

- Multi-Resolution Analysis (MRA)
- Continuous Wavelet Transform (CWT)
- Wavelet Functions Properties

Discrete Wavelet Transform

- Discrete and Continuous Wavelet Transform
- Subband Coding Algorithm
- Matrix Interpretation

5 Wavelet Transform Applications

- Discontinuity Detection in the ECG Signal
- Image Compression
- Image Segmentation
- Noise Reduction by Wavelet Shrinkage

イロト イヨト イヨト イヨ

Introduction

Fourier Transform

Continuous Fourier Transform

Wavelet Transform

MRA

Wavelets Properties

DWT

Subband Coding

Matrix Interpretation

WT Applications

Image Compression

Image Segmentation

Noise Reduction

References

Discontinuity Detection in the ECG Signal

Eva Hostalkova

Introduction

Fourier Transform

Continuous Fourier Transform STFT

Wavelet Transform

CWT

Wavelets Properties

DWT

DWT and CWT

Subband Coding

Matrix Interpretation

WT Applications

Discontinuity Detection Image Compression Image Segmentation Noise Reduction

References

Image Compression

 The Parseval theorem: the energy ε_x conveyed in the signal x equals the energy of the coefficients w obtained through an orthonormal transform

$$\varepsilon_x = \sum_{n=0}^{N-1} |x_n|^2 = \sum_{k=0}^{N-1} |w_k|^2$$
 (26)

Introduction

Fourier Transform Continuous Fourier Transform

Wavelet Transform MRA

Wavelets Properties

DWT

DWT and CWT Subband Coding

Matrix Interpretation

WT Applications

Discontinuity Detection Image Compression

Noise Reduction

References

(a) ORIGINAL IMAGE

(c) DWT SEGMENTATION

- Image preprocessing
- Watershed transform 2
- DWT features extraction 3
- Features classification using a neural network

(b) WATERSHED TRANSFORM

(d) RECOGNIZED REGIONS SUPERIMPOSED ON ORIGINAL IMAGE

Wavelet Transform

Eva Hostalkova

Introduction

Fourier Transform

Continuous Fourier Transform STFT

Wavelet Transform

CVVI

Wavelets Properties

DWT

DWT and C

Subband Coding

Matrix Interpretation

WT Applications

Discontinuity Detection Image Compression Image Segmentation

Noise Reduction

References

Noise Reduction by Wavelet Shrinkage

Noise Reduction

WT Applications

イロン イロン イヨン イヨン

Eva Hostalkova

Introduction

Fourier Transform Continuous Fourier Transform STFT

Wavelet Transform MRA CWT

Wavelets Properties

DWT

DWT and CWT

Subband Coding

Matrix Interpretation

WT Applications

Discontinuity Detection Image Compression Image Segmentation

Noise Reduction

References

Noise Reduction

WT Applications

Noise Reduction by Wavelet Shrinkage

Eva Hostalkova

Introduction

Fourier Transform Continuous Fourier Transform

Wavelet Transform MRA CWT

Wavelets Properties

DWT

DWT and CWT

Subband Coding Matrix Interpretation

WT Applications

Discontinuity Detection Image Compression Image Segmentation

Noise Reduction

References

Noise Reduction

WT Applications

Eva Hostalkova

Introduction

Fourier Transform Continuous Fourier Transform

Wavelet Transform MRA CWT

Wavelets Properties

DWT

DWT and CWT Subband Coding

Matrix Interpretation

WT Applications

Discontinuity Detection Image Compression Image Segmentation

Noise Reduction

References

Noise Reduction by Wavelet Shrinkage

Noise Reduction

WT Applications

イロン イ団 とく ヨン イヨン

Eva Hostalkova

Introduction

Fourier Transform Continuous Fourier Transform

Wavelet Transform MRA CWT

Wavelets Properties

DWT

DWT and CWT

Subband Coding

Matrix Interpretation

WT Applications

Discontinuity Detection Image Compression Image Segmentation

Noise Reduction

References

Noise Reduction by Wavelet Shrinkage

WT Applications Noise Reduction

イロン イ団 とく ヨン イヨン

Eva Hostalkova

Introduction

Fourier Transform

Continuous Fourier Transform STFT

Wavelet Transform

CWI

Wavelets Properties

DWT

DWT and CW

Subband Coding

Matrix Interpretation

WT Applications

Discontinuity Detection Image Compression Image Segmentation

Noise Reduction

References

Noise Reduction by Wavelet Shrinkage

Noise Reduction

WT Applications

< □ > < □ > < □ > < □ > < □ >

Eva Hostalkova

Introduction

Fourier Transform

Continuous Fourier Transform STFT

Wavelet Transform

CWI

Wavelets Properties

DWT

DWT and CWT

Subband Coding

Matrix Interpretation

WT Applications

Discontinuity Detection Image Compression Image Segmentation

Noise Reduction

References

Noise Reduction by Wavelet Shrinkage

Thresholding procedure type? Threshold level?

Wavelet function? Number of levels?

< □ > < □ > < □ > < □ > < □ >

WT Applications Noise Reduction

Wavelet Transform

Introduction

Fourier Transform Continuous Fourier Transform

Wavelet Transform

Wavelets Properties

DWT

Subband Coding

Matrix Interpretation

WT Applications

Discontinuity Detection Image Compression Image Segmentation

References

Noise Reduction by Wavelet Shrinkage

WT Applications Noise Reduction

Wavelet Transform

Introduction

Fourier Transform Continuous Fourier Transform

Wavelet Transform MRA

Wavelets Properties

DWT

Subband Coding

Matrix Interpretation

WT Applications

Discontinuity Detection Image Compression Image Segmentation

References

Noise Reduction by Wavelet Shrinkage

Eva Hostalkova

Introduction

- Fourier Transform Continuous Fourier Transform STFT
- Wavelet Transform MRA CWT
- Wavelets Properties
- DWT
- DWT and CWT
- Subband Coding
- Matrix Interpretation
- WT Applications
- Discontinuity Detection Image Compression Image Segmentation
- Noise Reduction

References

S. Mallat.A Wavelet Tour of Signal Processing. Academic Press, 1998.

References

M. Barni. *Document and Image Compression*. Taylor & Francis, 2001.

- R. Polikar. The Wavelet Tutorial.
- http://users.rowan.edu/ polikar/, Iowa State University, 2001.
- C. Valens. A Really Friendly Guide to Wavelets. http://pagesperso-orange.fr/polyvalens/, 2003.

www.wavelet.org

- The MathWorks, Inc. *Matlab Help*. www.mathworks.com 2009.

• • • • • • • • • • •