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Introduction

Wavelet Transform (WT) History
19th cent. - Jean B. Fourier: frequency analysis
1909 - Alfred Haar: Haar function (not yet WT)
since 1990s - WT related research and applications

Wavelet Functions
Wavelet = a small wave, i.e. an oscillatory function - zero
outside a bounded interval (having compact support)
Some real, some complex
Designed as much smooth and symmetric as possible
Seldom analytic expression, mostly parametric (e.g.
Morlet, Haar or Daubechies fcns)
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Introduction

WT Analysis
For non-stationary signals (with time-varying frequency
content)

WT Applications in Signal Processing
Noise reduction
Detection of trends and discontinuities in higher
derivatives
Compression (JPEG2000, FBI fingerprints database)
Image edge detection
Watermarking
Features extraction for image segmentation
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Fourier Transform Continuous Fourier Transform

Continuous Fourier Transform (FT)
Decomposes signals (real or complex) into the orthogonal
basis of complex exponentials e−j2πft of frequencies f
FT for the angular frequency ω=2πf and time t:

X (ω) =

∫ +∞

−∞
x(t) e−jωt dt (1)

where X (ω) is the Fourier transform of the function x(t)

Converges for a piece-wise smooth x(t) or finite energy:∫ ∞
−∞
|x(t)|2dt <∞ (2)

Inverse FT

x(t) =
1
2π

∫ +∞

−∞
X (ω) ejωt dω (3)
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Fourier Transform Continuous Fourier Transform

FT Analysis of Non-Stationary Signals
Discrete FT for the discrete freq. index k =0, 1, . . . ,N−1
and discrete time n (for the unit sampling frequency)

X (k) =
N−1∑
n=0

x(n) e−j2πkn/N (4)
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Fourier Transform STFT

Discrete Short-Time Fourier Transform (STFT)
Non-stationary signal analysis (localizes frequency
components within time intervals)
STFT of a discrete signal x(n) for k =0, 1, . . . ,N−1:

X (u, k) =
N−1∑
n=0

x(n) w(n − u)e−j2πkn/N (5)

where u denotes the window position

Uncertainty (Heisenberg) Principle

∆T ∆f = 1 (6)

∆f = Fs/N . . . frequency resolution (distance between
adjacent spectral samples)
∆T = N Ts . . . time resolution (window length)
N . . . number of samples per window
Fs = 1/Ts . . . sampling frequency
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Fourier Transform STFT

STFT - Uncertainty Tradeoff
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Wavelet Transform
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Wavelet Transform MRA

Multi-Resolution Analysis (MRA)
The wavelet transform deals with the uncertainty principle
by MRA
Analyzing signals at different frequency bands with
different resolution:

Higher frequencies: good ∆T , poor ∆f
Lower frequencies: good ∆f , poor ∆T

Convenient for most real-world signals composed of:
Long-lasting lower frequencies (approximations)
Short-lasting higher frequencies (details - main
information)
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Wavelet Transform CWT

Continuous Wavelet Transform (CWT)
FT: correlation of a signal of finite energy with complex
exponentials ej2πft of different frequencies f
WT: correlation of a signal of finite energy with delated
and shifted versions ψu,s of the mother wavelet ψ:

ψu,s(t) =
1√
s
ψ

(
t − u

s

)
(7)

where u is the shift of ψ along the signal → time
and s is scale (dilation of ψ → the inverse of frequency)
1/
√

s ensures energy normalization

CWT of the signal x(t):

W ψ
x (s, u)=〈x , ψu,s〉 =

1√
s

∫ +∞

−∞
x(t)ψ∗

(
t−u

s

)
dt (8)

where * denotes the complex conjugate pair
and 〈〉 stands for the inner product
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Wavelet Transform CWT
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Wavelet Transform CWT

CWT Computation Procedure (s =1)
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Wavelet Transform CWT

CWT Computation Procedure (s =5)
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Wavelet Transform CWT

CWT Properties

Linearity: implied by the properties of the inner product

Shift invariance:
A shift in the signal
along the time axis
7→ the equivalent
shift of the wavelet
coefficients without
any changes
Does not apply to
the discrete WT
(great drawback)

(a) Dual Tree CWT

Input

Wavelets

Level 1

Level 2

Level 3

Level 4

Scaling fn

Level 4

(b) Real DWT

Figure: Comparison of DWT and nearly invariant complex WT
(CWT is even better - completely shift invariant)
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Wavelet Transform CWT

Orthogonality and orthonormality

Not necessary for wavelet analysis (biorthogonality for
more freedom in wavelet filters construction)
A set of shifted and dilated versions of the mother wavelet
ψu,s , is orthonormal on the interval [a, b] when:

〈ψu,s , ψv ,r 〉 =

∫ b

a
ψu,s(t)ψ∗v ,r (t) dt =

{
1 for u =v , s = r
0 otherwise

(9)

A set of ψu,s , is orthogonal on the interval [a, b] when:

〈ψu,s , ψv ,r 〉 =

∫ b

a
ψu,s(t)ψ∗v ,r (t) dt =

{
c for u =v , s = r
0 otherwise

(10)
where c is a constant, ∗ denotes a complex conjugate
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Wavelet Transform Wavelets Properties

Wavelet Functions Properties I
Admissibility condition∫ ∞

−∞

|Ψ(ω)|2

|ω|
dω < +∞ (11)

where Ψ(ω) is the FT of ψ(t)
Required for no loss of information during the analysis nor
the synthesis
The basis do not have to be orthogonal

Consequences of Admissibility Condition
Oscillatory function (zero mean):∫ ∞

−∞
ψ(t) dt = 0 (12)

Band-pass spectrum (Ψ(ω) vanishes at ω = 0):

|Ψ(ω)|2| ω=0 = 0 (13)
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Wavelet Functions Properties II

Time dilation of ψ causes shift and compression of the
magnitude frequency spectrum |Ψ|
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Wavelet Transform Wavelets Properties

Desired Wavelet Functions Properties

Compact support (non-zero only on a restricted interval) -
not necessary
Regularity:

Smoothness of ψ and vanishing of |Ψ(ω)| for large ω
(small scales)
Vanishing moments concept (see literature)

Symmetry (liner phase)
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DWT DWT and CWT

Discrete Wavelet Transform (DWT)
CWT provides us with redundant signal representation
DWT - derive by critically sampling the CWT (great
reduction in the number of dilations and shifts)

ψu,s(t)=
1√
s
ψ

(
t−u

s

)
⇒ ψj,k(t)=

1√
s j
0

ψ

(
t−k τ0 s j

0

s j
0

)
(14)

Sampling on the Dyadic Grid
s0 =2 ⇒ the scale s =2j

τ0 =1 ⇒ the time translation u = k 2j

t denotes time, j , k are integers

ψj,k(t)=
1√
2j
ψ

(
t−k2j

2j

)
(15)
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Discrete Wavelet Transform (DWT)
CWT provides us with redundant signal representation
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Discrete & Continuous Wavelet Transform
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DWT Subband Coding

Wavelet and Scaling Filters
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The spectrum of the wavelet function corresponds to a
high-pass filter (or a band-pass filter for higher levels)
The spectrum of the scaling function corresponds to a
low-pass filter

Eva Hostalkova (ICT, Prague) Wavelet Transform Athens 2009 24 / 36



Wavelet Transform

Eva Hostalkova

Introduction

Fourier Transform
Continuous Fourier Transform

STFT

Wavelet Transform
MRA

CWT

Wavelets Properties

DWT
DWT and CWT

Subband Coding

Matrix Interpretation

WT Applications
Discontinuity Detection

Image Compression

Image Segmentation

Noise Reduction

References

DWT Subband Coding

Wavelet and Scaling Filters

200 400 600

−4

−2

0

2

4

6
x 10

−3 (a) Db2 WAVELET FCN

time
0 0.1 0.2 0.3 0.4

0

0.2

0.4

0.6

0.8

1

(b) Db2 WAVELET FCN: Freq. Response

M
ag

ni
tu

de

ω/2π

200 400 600

0

2

4

x 10
−3 (c) Db2 SCALING FCN

time
0 0.1 0.2 0.3 0.4

0

0.2

0.4

0.6

0.8

1

(d) Db2 SCALING FCN: Freq. Response

M
ag

ni
tu

de

ω/2π

The spectrum of the wavelet function corresponds to a
high-pass filter (or a band-pass filter for higher levels)
The spectrum of the scaling function corresponds to a
low-pass filter

Eva Hostalkova (ICT, Prague) Wavelet Transform Athens 2009 24 / 36



Wavelet Transform

Eva Hostalkova

Introduction

Fourier Transform
Continuous Fourier Transform

STFT

Wavelet Transform
MRA

CWT

Wavelets Properties

DWT
DWT and CWT

Subband Coding

Matrix Interpretation

WT Applications
Discontinuity Detection

Image Compression

Image Segmentation

Noise Reduction

References

DWT Subband Coding

Subband Coding Algorithm
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down-sampling the previous level
output by 2
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DWT Subband Coding

Convolution and Downsampling by 2
The taps of the high-pass filter hd and the low-pass ld
filter are derived from the wavelet and the scaling function,
resp., of a chosen family (e.g. Daubechies, symlets, etc.)

Convolution and Downsampling by 2
Approximation coefficients of the first level

A1[n]=

∞∑
k=−∞

ld [k] x [2n − k] (16)

Detail coefficients of the first level

D1[n]=

∞∑
k=−∞

hd [k] x [2n − k] (17)

The j-th level Aj [n]=

∞∑
k=−∞

ld [k] Aj−1[2n − k] (18)

Dj [n]=

∞∑
k=−∞

hd [k] Aj−1[2n − k] (19)
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DWT Subband Coding

Subband Coding & the Frequency Spectrum

Dilated by 2 ⇒ the spectrum is compressed and shifted
Finite number of dilations ⇒ advantageous to use a
low-pass filter - derived from the scaling function φ(t)
(the counter part of the wavelet filter at each level -
creating a filter bank)
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DWT Matrix Interpretation

DWT Matrix
The Haar filters

ld =1/
√
2 · [1, 1] (20)

hd =1/
√
2 · [1, −1] (21)

DWT matrix for the Haar filters

W =
1√
2
·



1 1 0 0 . . . 0 0
−1 1 0 0 . . . 0 0
0 0 1 1 . . . 0 0
0 0 −1 1 . . . 0 0
...

...
...

...
. . .

...
...

0 0 0 0 . . . 1 1
0 0 0 0 . . . −1 1


(22)

W includes both convolution and down-sampling by 2
(the filters are shifted by 2 samples)
W is orthonormal ⇒ W ·WT = I
where I stands for the identity matrix
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DWT Matrix Interpretation

DWT of Signal x Using the Haar Filters

1√
2



1 1 0 0 . . . 0 0
−1 1 0 0 . . . 0 0
0 0 1 1 . . . 0 0
0 0 −1 1 . . . 0 0
...

...
...

...
. . .

...
...

0 0 0 0 . . . 1 1
0 0 0 0 . . . −1 1


·



x(0)
x(1)
x(2)
x(3)
...

x(N−1)
x(N)


=



A1(0)
D1(0)
A1(1)
D1(1)

...
A1( N

2 −1)
D1( N

2 −1)



DWT Decomposition and Reconstruction
Signal decomposition

W · x = w (23)
Signal reconstruction

x = W−1 ·w (24)
Signal reconstruction for the orthonormal DWT

x = WT ·w (25)
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WT Applications Discontinuity Detection

Discontinuity Detection in the ECG Signal
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WT Applications Image Compression

Image Compression

The Parseval theorem: the energy εx conveyed in the
signal x equals the energy of the coefficients w obtained
through an orthonormal transform

εx =
N−1∑
n=0
|xn|2 =

N−1∑
k=0
|wk |2 (26)

 (a) ORIGINAL IMAGE  (b) DECOMPOSED IMAGE

0.8%

0.7% 0.1%

94.2% 2%

2% 0.4%

 (c) COMPRESSED IMAGE : 94.2%
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WT Applications Image Segmentation

Magnetic Resonance Image Segmentation

1 Image preprocessing
2 Watershed transform
3 DWT features extraction
4 Features classification using a neural network
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WT Applications Noise Reduction

Noise Reduction by Wavelet Shrinkage
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