
Institute of Chemical Technology in Prague

Faculty of Chemical Engineering

Department of Computing and Control Engineering

CONTENT BASED IMAGE SEGMENTATION

MASTERS THESIS

Author: Eva Hošťálková
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Summary

This thesis deals with image segmentation as a widely utilised instrument of image process-
ing. Two segmentation tools are introduced here, i.e. the watershed transform and feature-
based image segmentation (FBIS). Chap. 1 supplies a brief introduction to primary problems
of content-based image retrieval (CBIR). One of these problems is FBIS, whose applications
are listed here. Chap. 2 presents the one-dimensional and two-dimensional Fourier transform
(FT) and space domain filters, both employed in signal and image denoising. Fundamentals
of wavelet theory are also stated here. Chap. 3 discusses use of the wavelet transform (WT)
in signal and image denoising and texture-based image characteristics computation. Chap. 4
describes the watershed segmentation in conjunction with the distance transform, gradient
magnitude, and marker-control methods. The effect of the amount of additional noise on seg-
mentation is demonstrated in examples. Chap. 5 is devoted to feature-based image segmentation
(FBIS) carried out on simulated and real magnetic resonance (MR) images. Same as in Chap. 4,
the influence of image noise on FBIS is discussed.

All programmes are written in Matlab using particularly the commands of the Image Processing
Toolbox and Wavelet Toolbox. Segments of the source code are displayed as figures.

Souhrn

Diplomová práce se zabývá metodami segmentace obraz̊u, která je významnou součást́ı teorie
zpracováńı signál̊u. Uvád́ıme dvě metody segmentace, a to watershed transformaci a segmentaci
založenou na charakteristikách obraz̊u (FBIS). Kap. 1 je zaměřena na základńı problematiku
vyhledáváńı obraz̊u v databáźıch na základě jejich obsahu (CBIR), jej́ıž součást́ı je i segmentace
obraz̊u. Kap. 2 uvád́ı jedno-dimensionálńı a dvou-dimensionálńı Fourierovu transformaci (FT) a
prostorovou filtraci jako metody odstraněńı šumu ze signál̊u nebo obraz̊u. Jsou zde též uvedeny
základy wavelet transformace (WT). Kap. 3 ukazuje využit́ı WT pro odstraňováńı šumu pomoćı
prahováńı, a pro výpočet koeficient̊u charakterizujićıch texturu. Kap. 4 popisuje watershed
segmentaci ve spojeńı s distančńı transformaćı a daľśımi technikami. Názorně je prezentován
vliv množstv́ı rušivé složky v obrazu na výsledky segmentace. Kap. 5 se zabývá FBIS prováděné
na simulovaných i reálných obrazech magnetické resonance (MR). Zde stejně jako v kap. 4,
zkoumáme vliv velikosti šumu na celkovou segmentaci.

Všechny programy jsou napsány v prostřed́ı Matlabu využ́ıvaje převážně Image Processing
Toolbox a Wavelet Toolbox. Části programů jsou uvedeny v textu jako obrázky.
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1

Introduction

1.1 Problems of Content-Based Image Retrieval (CBIR)

Content-based image retrieval (CBIR) [10] is a technique for searching images in large image
databases. This method is based on the visual information contained in images so-called low-
level characteristics.

Image retrieval has been developed since the late 1970s. At that time, text-based search [10] was
employed as a traditional database technique using standard Boolean queries. This technique
requires images to be annotated with text representing semantic interpretation of an image
content so-called high-level characteristics. Text annotation needs to be done manually, and thus
becomes expensive for very large image databases. And furthermore, this semantic description is
context-sensitive, incomplete and often subjective. This forms one of the fundamental problems
of image retrieval, which is to match high-level semantic characteristics and low-level visual
characteristics. It is also difficult for the user to choose right keywords and their structure
to define a query.

With the boom of digital images in the early 1990s, a new approach towards image retrieval
had to be developed to substitute the text-based retrieval. The CBIR method utilises visual
characteristics of image content such as colour, texture, shape and spatial information, which
are low-level characteristics.

CBIR systems work in the following manner [10]. As a query definition, the user sketches a rough
outline of an image with a graphic editing tool or provides the system with an example image or
group of images with similar features.. The system computes feature vectors for the query, and
then searches through the database of indexed images and calculates their similarity measure
to the user input. According to the similarity measure, the system generates a ranked list
of search results. The user marks the relevant and irrelevant search results in order to influence
the next stage of retrieval. This action is repeated several times until the desired image is
found. Users’ relevance feedback, as this loop is called, modifies the retrieval process to be more
efficient.

Images in the database need to be indexed with their features so as the CBIR system is able
to search through the database. Image features are either global or local, which characterise indi-
vidually each object in an image. The second option is more natural for users, but on the other
hand, requires image segmentation.

For large databases, segmentation needs to be done automatically without human supervi-
sion during the segmentation process. This represents another fundamental problem of CBIR.
There is no universal algorithm for image segmentation, which would suit all kinds of images.
We can either employ region segmentation for finding homogenous regions or complete object
segmentation for identifying objects, which are semantically meaningful.

After segmentation, we may extract features of the resulting segments may be extracted and
subsequently classify the segments according to their features by self-organising neural networks
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(NN). However, feature based classification using NN is beyond the scope of this work.

This thesis introduces two image segmentation tools, i.e. watershed segmentation and feature-
based image segmentation (FBIS) discussed in Chap. 4 and 5, respectively. FBIS [3] is a segmen-
tation technique engaging visual descriptors of images called features. Any rule that captures
the desired information from an image can be used as a feature. Features need to be chosen
in accordance to their ability to distinguish similarities and dissimilarities between structures
composing objects. Chap. 5 focuses on FBIS in more detail.

1.2 Applications of Feature-Based Image Segmentation (FBIS)

Apart from image retrieval, feature-based image segmentation (FBIS) using texture decriptors is
utilised in a range of interdisciplinary applications, such as microscopic, satellite, and biomedical
imagery. To be more specific, in microscopic imagery, FBIS is employed to examine fabric
texture of ropes used in mountaineering, which is highly important to safety. In satellite images,
this technique is used to detect cumulus cloud fields [3]. And lastly in magnetic resonance (MR)
imagery, this method is implemented to identify various body tissues, which can be subsequently
modelled in three dimensions using two sets of MR images in two perpendicular planes. Fig. 1.1
pictures an MR image of the spine and its cut.

(a) MR IMAGE (b) MR IMAGE CUT

FIGURE 1.1. MR image of spine and its cut.

.
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2

Mathematical Methods of Image Processing

In this chapter, we describe signal processing methods in the time and frequency domain, and
multiresolutional analysis for one dimensional and two dimensional signals. Signal denoising is
the application that we particulary focus on.

2.1 Time Domain Signal Processing

Before approaching the filter theory representing the fundamentals of digital signal process-
ing, let us note that in this work, terms time and space are used as synonyms. As for image
processing, the term space is usually preferred.

Filters are used in almost every electronic system. Originally, continuous-time or analogous
filters were preferred to digital ones. However, vast development of computers implied the ne-
cessity of digital filters. Analogous filters [16] are specialised electronic circuits composed of re-
sistors, capacitors, operation amplifiers etc., which process current or voltage analogous signals.
Whereas digital filters [16] implement filtering of digitised signals as numerical computations us-
ing digital processors, such as general purpose PCs or specialised digital signal processor chips.
At first, digital filter design was based on deriving from analogous ones. Nowadays, the design
is independent on continuous-time systems.

Digital filters are employed in a wide range of applications [14], such as noise reduction, chan-
nel equalization, radar, audio and video processing, biomedical signal processing, financial data
analysis etc. In these applications, the following basic functions of digital filters [14] are utilised.
The first one is constraining a signal into a given frequency band or channel (e.g. anti-aliasing
filters), second, decomposing a signal into frequency bands (e.g. filter banks, frequency multi-
plexers), third, modifying frequency spectrum of a signal (e.g. audio graphic equalizers, channel
equalizers), and last, modelling of the input-output relationship of a system (e.g. music synthe-
sizers).

We can classify filters [14], for instance, as linear or non-linear filters, adaptive time-varying or
non-adaptive time-invariant filters. In this work, we consider only linear time-invariant filters,
which are described by a linear difference equation with constant coefficients, see Eq. (2.1). We
also distinguish finite impulse response (FIR) filters and infinite impulse response (IIR) filters.
These both types of filters are to be described below in Subsec. 2.1.1.

According to the band of frequencies allowed through the filter, filters are classified into the fol-
lowing categories [14]. First, low-pass filters let pass through only the frequencies lower than
the cut-off frequency wc. Second, high-pass filters allow through only the frequencies higher
than wc. Third, band-pass filters and band-stop filters preserve or attenuate, respectively, only
such frequencies in a signal, which fall into the band between the lower and the higher cut-
off frequency. The last category to be mentioned is filter banks. Filter banks split a signal
into frequency bands, uniformly or non-uniformly spaced in frequency.
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2.1.1 Methods of Filters Description

We use several methods to describe filters. One of them is the time domain difference equation
relating the input and output of a filter. This equation describes the fact, that the current
output sample is a weighted combination of the input samples and the previous output samples.
For a linear time-invariant filter [14]

y(m) =
N∑
k=1

ak y(m− k) +
M∑
k=0

bk x(m− k) (2.1)

where ak and bk are filter coefficients calculated to obtain the desirable frequency response
of the filter, N and M are the numbers of these coefficients, respectively, whilst N is called
the filter order. y(m) and x(m) are the output and input signal, respectively, with the time
index m.

Another way of representing filters is the impulse response. In this case, the input signal is
an impulse that is non-zero just at a given time m. The impulse response is a very useful
description method, because any digital signal can be represented by a series of shifted and
scaled impulses, and the impulse covers all frequencies with equal energy.

Another means of filters description is the transfer function [14], that is the ratio of the z-
transferred function of the output and input of a filter

H(z) =
Y (z)

X(z)
(2.2)

For a linear time-invariant filter, the transfer function runs as follows

H(z) =

M∑
k=0

bk z
−k

1 −
N∑
k=1

ak z
−k

(2.3)

The transfer function provides us with important filter characteristics. These are so-called poles
and zeros, i.e. roots of the denominator and nominator of the transfer function, respectively.
The former introduce resonances and the latter introduce deeps in frequency. Provided the co-
efficient vectors ak, bk ∈ R, the poles and zeros occur in complex conjugate pairs [14].

The frequency response may also be used for filters description. It is a complex variable based
on how filters change the magnitude and phase of the input, as reflected by the phase and
magnitude response, respectively. The frequency response can be obtained either by calculating
the Fourier transform (see Sec. 2.2) of the impulse response, or by substituting for z = ejw

in the z-transfer function from Eq. (2.2) given as [14]

H(ejw) =
Y (ejw)

X(ejw)
(2.4)

2.1.2 FIR and IIR Filters

Finite-duration impulse response (FIR) filters can be described by the following difference
equation [14]

y(m) =
M∑
k=0

bk x(m− k) (2.5)
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This relation distinctly shows that FIR filters have no feedback, in other words, the output is
independent on the previous outputs. Thus FIR filters are also called non-recursive filters.

The FIR filter transfer function given by the next equation contains no poles [14]. Consequently,
FIR filters are sometimes called all-zero filters.

H(z) =
M∑
k=0

bk z
−k (2.6)

Infinite-duration impulse response (IIR) filters are also called recursive filters. The output is
a function not only of the input, but also of the previous outputs. This relationship produces
the feedback in the difference equation given by [14]

y(m) =
N∑
k=1

ak y(m− k) +
M∑
k=0

bk x(m− k) (2.7)

The transfer function expressed by Eq. (2.8) contains poles, and can also contain a number
of zeros [14]. Therefore, IIR filters are sometimes called zero-pole filters. The number of finite
poles must equal or exceed the number of finite zeros. If having no zeros, IIR filters are called
all-pole filters.

H(z) =

M∑
k=0

bk z
−k

1 −
N∑
k=1

ak z
−k

(2.8)

In comparison with FIR filters, IIR filters require less coefficients to achieve the same de-
sired frequency response. This fact implies smaller memory and computational requirements.
On the other hand, FIR filters are always stable, whereas IIR filters can become unstable,
for example, when the poles are outside the unit circle in the pole-zero plane.

FIR and IIR filters may be combined into direct, cascade, or parallel structures [14]. These
structures differ in complexity, cost of implementation, computational efficiency and stability.
The direct form is the simplest one, however; IIR filters cannot be employed in this structure
due to the problems with their stability.

2.1.3 Filter Applications

The first of the filter applications demonstrates removing of the higher-frequency component
from the signal composed of two frequencies using the IIR filter of order 6 designed with the Mat-
lab command butter [12], and two FIR filters of orders 20 and 36 designed with the command
fir1 [12]. In Fig. 2.1, we can see the comparison between the outputs of the above mentioned
filters produced by the command filter [12]. For FIR filters, there is a considerably long space
delay due to the high filter orders. The IIR filter has order 6, and therefore the output delay is
not so obvious.

Fig. 2.2 displays the frequency spectrum of the input signal and the frequency response of
the IIR and both FIR filters. To achieve similar frequency response, the orders of the FIR filters
have to be several times higher than that of the IIR filter. The Matlab code generating the above
mentioned filters and their frequency response is quoted in Fig. 2.3.

A practical example of the Electroencephalograph (EEG) signal denoising is displayed in Fig. 2.4
and 2.5. The EEG has the sampling frequency of 200 Hz. We aim to remove the noise component
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0 50 100 150 200 250 300
−2

0

2
 (a) INPUT SIGNAL

0 50 100 150 200 250 300
−1

0

1
 (b) FIR 20 AND IIR 6 FILTERS OUTPUTS

FIR 20
IIR 6

50 100 150 200 250 300
−1

0

1
 (c) FIR 36 AND IIR 6 FILTERS OUTPUTS

FIR 36
IIR 6

FIGURE 2.1. 1D signal denoising using FIR and IIR filters of different orders.
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FIGURE 2.2. FT of 1D signal, frequency response of FIR and IIR filters of different orders.

of 50 Hz corrupting the signal, which originates from electrical interference from the main supply
[16]. The band-stop FIR filter of order 100 serves obviously well for this purpose.

In two-dimensional space, IIR filters cannot be used because of their instability. Fig. 2.6 shows
the 2D signal denoising using the FIR filter. The 2D input signal containing two frequency
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% DE-NOISING IN 1D SPACE DOMAIN

% SIGNAL GENERATION

N=300; n=[0:N-1]’; x=sin(2*pi*0.05*n)+sin(2*pi*0.3*n);

% LOW-PASS FILTERS DESIGN AND FILTERING

wc=0.2 % cut-off freq.

a=1, b1=fir1(20,wc) % FIR order 20, hamming window

y1=filter(b1,a,x); % FIR 20 filter output

b2=fir1(36,wc) % FIR order 36, hamming window

y2=filter(b2,a,x); % FIR 36 filter output

[b3,a3]=butter(6,wc) % IIR order 6, butterworth window

y3=filter(b3,a3,x); % IIR 6 filter output

% FREQUENCY RESPONSE

[H1 w1]=freqz(b1,1,N,’whole’); % FIR order 20

[H2 w2]=freqz(b2,1,N,’whole’); % FIR order 36

[H3,w3]=freqz(b3,a3,N,’whole’); % IIR order 6

FIGURE 2.3. Matlab code for 1D signal denoising using FIR and IIR filters of different orders.
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FIGURE 2.4. EEG signal denoising using FIR filter of order 100.

components is shown in Fig. 2.6a, the FT of the input signal in Fig. 2.6b, the FT of the signal
and the frequency response of the FIR filter in Fig. 2.6c, the FT of the output signal Fig. 2.6d,
and finally, the signal after windowing in Fig. 2.6e.

The 2D FIR filter is designed by the Matlab function fwind1 [11] based on the desired filter
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% EEG SIGNAL DENOISING USING FIR FILTER

load EEGshort % load EEG signal

[m,n]=size(EEGshort), Fs=200 % sampling frequency

x=EEGshort(5,200:800); % take chanel 5 (out of m=19 channels) samples(200:800)

x=(x-mean(x))/std(x); % remove trend

N=length(x), n=[1:N];

X=fft(x); % FT for frequency plot

X=(X-min(X(:)))/(max(X(:))-min(X(:)));

% BAND-STOP FIR FILTER OF ORDER 100

Wn=[0.4 0.5]; %cut-off freq.

a=1, b=fir1(100,[46 54]/(Fs/2),’stop’); % filter coef., hamming window

y=filter(b,a,x); % filtering

[H w]=freqz(b,1,N,’whole’); % filter freq. response for frequency plot

FIGURE 2.5. Matlab code for EEG signal denoising using FIR filter of order 100.

FIGURE 2.6. 2D signal denoising using FIR filter.

frequency response and a chosen window shape. In this case, we use the Hamming window
of length 15 as noted in the enclosed Matlab code in Fig. 2.7.
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% DE-NOISING IN 2D SPACE DOMAIN

% SIGNAL GENERATION

N=64; n=[0:N-1]’; M=64; m=[0:M-1]’;

x=sin(2*pi*0.05*n)+sin(2*pi*0.3*n); X=x*x’;

X=(X-min(min(X)))/(max(max(X))-min(min(X))); % normalization

% FIR FILTER DESIGN AND FILTERING

[f1,f2]=freqspace(N,’meshgrid’); r=sqrt(f1.^2 + f2.^2); % circle

Hd=ones(N); % desired freq. response Hd

Hd((r<0)|(r>0.4))=0; % 0.4 corresponds to wc=0.2

h=fwind1(Hd,hamming(15)); % filter coef. vector h

Y=filter2(h,X); % filter output

% DFT: FILTER VERIFICATION

XX=fft2(X-mean(mean(X))); Xs=fftshift(XX);

YY=fft2(Y-mean(mean(Y))); Ys=fftshift(YY);

FIGURE 2.7. Matlab code for 2D signal denoising using FIR filter.
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2.2 Frequency Domain Signal Analysis

The objective of signal analysis in the frequency domain is to determine what frequencies
a given signal is composed of, so that we can modify the frequency spectrum of the signal
for our purposes. A powerful tool for signal frequency analysis is the Fourier transform.

2.2.1 Discrete Fourier Transform (DFT)

Continuous Fourier Transform

The Fourier transform (FT for short) is a result of Jean Babtiste Joseph Fourier’s work dat-
ing back to the early 19th century. The FT coefficients are calculated as linear combinations
of the basis functions, which in the case of the FT are sines and cosines, in other words complex
exponentials. We can therefore say, that the FT breaks down a signal into constituent sinusoids
of different frequencies [5]. The basis functions are orthogonal which property is a principal as-
sumption for signal reconstruction from the FT coefficients by the means of the inverse Fourier
transform. Orthogonality is explained in detail in Sec. 2.3.

For the radian frequency w = 2πf and time t, the FT is defined as:

X(ω) =
∫ +∞

−∞
x(t) e−jωt dt (2.9)

In Eq. (2.9), the frequency spectrum X(ω) of the signal x(t) may be interpreted as a linear com-
bination of complex exponentials. X(ω) is continuous and thus the number of the exponentials
is indefinite [4]. The inverse FT is given by:

x(t) =
1

2π

∫ +∞

−∞
X(ω) ejωt dω (2.10)

Eq. (2.9) and Eq. (2.10) apply only to signals x(t) of finite energy:

Energy =
∫ +∞

−∞
|x(t)|2 dt <∞ (2.11)

This implies that x(t) must be aperiodic, since periodic signals have infinite energy. To obtain
frequency analysis of a periodic signal, we need to employ the Fourier series with coefficients
ak and fundamental frequency ω0 [4]:

x(t) =
∑
k∈Z

ak e
jkω0t (2.12)

If ω0 increases, the spectral lines become more compact, and in the limit ω0 → ∞, the signal
becomes aperiodic and its spectrum continuous.

Sinusoids as the FT basis functions are infinitely differentiable. In case that x(t) is not smooth,
such as a rectangular pulse, a discontinuity in a signal introduces ripples in the FT in the vicinity
of this point. These ripples have a maximum overshoot of 9% of the discontinuity height.
This effect is called the Gibbs phenomenon. The increase of the number of harmonics N (see
Eq. (2.12)) causes compression of the ripples towards the discontinuity, however, it does not
decrease the 9%-overshoot [14].
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The FT properties, such as linearity, duality etc., are analogous to the discrete Fourier transform
properties. They are widely described and derived in literature, see [14, 4]. Let us just mention
the property of symmetry. The FT X(ω) of a real function x(t) is symmetric:

X(−ω) = X∗(ω) (2.13)

where X∗(ω) denotes the complex conjugate of X(ω). As a result of this relation, �{X(ω)} is
an even function and �{X(ω)} is an odd function. Hence X(ω) for positive ω provides us with
full spectral information of real signals [4].

Eq. (2.13) implies that for a real even function x(t) = x(−t), X(ω) is also a real even function:

X∗(ω) = X(−ω) =
∫ +∞

−∞
x(t) ejωt dt =

∫ +∞

−∞
x(−t) e−jωt dt = X(ω) (2.14)

Analogously, for a real odd function −x(t) = x(−t), X(ω) is also a real odd function. We can
break down a function into its even and odd component, the real and the imaginary part,
respectively, of its FT will correspond to them. This property applies to the Fourier series as
well [4].

Discrete Fourier Transform

Because of a wide use of computers, continuous signals and transforms have to be converted
to discrete ones. In practise, the most spectral analysis is based on the discrete Fourier transform
(DFT).

We can obtain a discrete-time signal by sampling its continuous-time version. According to the sam-
pling theorem, also called the Nyquist’s theorem, the choice of the sampling frequency fs is
constrained. fs has to be high enough to cover all frequencies contained in the original signal.
This theorem states that a continuous-time signal can be completely recovered from its samples,
if and only if fs is at least twice the Nyquist’s rate [14]

fs ≥ 2fmax (2.15)

where fmax is the maximum frequency contained in the original signal or the bandwidth
of the signal. In case that fs does not satisfy the Nyquist’s theorem, the phenomenon called alias-
ing takes place. Aliasing is a distortion caused by overlapping of two replications of the spectral
envelope of a periodic frequency spectra corresponding to the sampled signal [4]. Aliasing is
sometimes called spectral leakage.

When an aperiodic signal of length N is sampled, the FT is periodic, but continuous. The DFT
is derived from sampling the FT of discrete signals. We sample one period 2π of the FT to obtain
N uniformly spaced DFT coefficients. Both the FT and the DFT are invertible. Due to the fact
that the inverse FT of a discrete function is a periodic function, for the DFT computation,
we assume the original non-periodic signal to be periodic with the period N [14]. Eq. (2.16) is
the DFT formula, where x(n) is a time-series and X(k) is its DFT, for k = 0, . . . , N − 1.

X(k) =
N−1∑
n=0

x(n) e−j
2π
N
nk (2.16)

The inverse DFT for n = 0, . . . , N − 1 is defined as follows:

x(n) =
1

N

N−1∑
k=0

X(k) ej
2π
N
nk (2.17)
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Fast Fourier Transform Algorithm

Originally, the DFT was computed by estimating the correlation function for a given signal and
then carrying out the FT of this function to obtain the approximation spectrum of the signal.
This method was commonly used until 1960s [7].

That was the time, when the fast Fourier transform (FFT) was developed. The FFT is an effi-
cient algorithm for computing the FT spectra of time series [7] and is utilised also in Matlab as
the fft function [12]. This algorithm employs decimation in both time and frequency. The basic
idea is to modify the transform of the length N into two transforms, i.e. the transform of N

2
even

samples and the transform of N
2

odd samples. The FFT reduces the number of computations
from 2N2 to 2 log2N [15].

2.2.2 Two-Dimensional Discrete Fourier Transform (2D DFT)

The one-dimensional DFT can be extended to two dimensions preserving most of its properties.
The 2D DFT and its inverse version are defined in Eq. (2.18) and Eq. (2.19), respectively.
For k = 0, . . . ,M − 1 and l = 0, . . . , N − 1:

X(k, l) =
M−1∑
m=0

N−1∑
n=0

x(m,n) e−j2π (mk
M

+ ln
N

) (2.18)

For m = 0, . . . ,M − 1 and n = 0, . . . , N − 1:

x(m,n) =
1

MN

M−1∑
k=0

N−1∑
l=0

X(k, l) ej2π (mk
M

+ ln
N

) (2.19)

2.2.3 Windowing

Windowing can be applied to signals either in the time or frequency domain. By windowing
a signal in the time domain, we constrain the length of otherwise infinite length aperiodic
signals, or signals of an unknown period. This length constraint limits signal energy to a finite
value and thus enables the FT. By windowing a signal in the frequency domain, we can modify
its spectrum by removing the undesirable frequency components. This technique is mostly used
for signal denoising discussed in Subsec. 2.2.5.

Windowing in discrete time n means multiplying a signal x(n) with a window w(n) [14]:

xw(n) = x(n)w(n) (2.20)

where w(n) can be for instance the unit-amplitude rectangular window of N -samples dura-
tion [14]:

w(n) =

{
1 0 ≤ n ≤ N − 1
0 otherwise

(2.21)

This multiplication corresponds to the convolution in the frequency domain [14]

Xw(k) = W (k) ∗X(k) (2.22)

As a consequence of windowing, there are two main phenomena affecting the resulting FT
Xw(k). These are firstly the finite window length effect and secondly the end-point effect. To ex-
plain the first mentioned finite window length effect, we have to derive the FT of the rectangular
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window w(n) using the convergence formula for the partial sum of a geometric series [14]

W (k) =
N−1∑
n=0

w(n) e−j
2π
N
nk =

1 − e−j2πk

1 − e−j
2π
N
k

= e−j
N−1

N
πk sin(πk)

sin(πk
N

)
(2.23)

The shape of the spectrum W (k) derived in Eq. (2.23) resembles the sinc function, i.e. sine
cardinal function, which is the FT of the rectangular window in continuous time. In contrast,
the FT of the rectangular window in discrete time is periodic, because of the sinus function
in the denominator [4]. The periodicity of W (k) can give way to mutual influence of the neigh-
bouring replications of the spectra.

The shorter the width of w(n) the wider the main lobe of W (k) and therefore the poorer
the frequency resolution. Consequently, the convolution of W (k) with X(k) given by Eq. (2.22)
causes some spreading of signal energy along the frequency axis inXw(k). This is called the finite
window length effect.

To demonstrate the finite window length effect, we have, for instance, a signal composed of two
sinusoids of the frequencies f1,f2 and a window of the length N . Then the frequency corre-
sponding to the window 1

N
must be smaller than the difference |f1 − f2|, otherwise the two

spectral components are not distinguishable [4].

The end-point effect represents another problem. The DFT algorithm assumes the input signal
periodic with the period equal to the length of the window N . For a windowed sinus wave,
the DFT depends on the number of sinus periods being windowed. If computing the DFT
of an integer multiple of signal periods, we obtain the same spectrum as that of an infinite
length sinusoid, i.e. the spectrum with only one frequency of a non-zero value. However, if we
input an non-integer number of signal periods, the input signal is not assumed to be a pure
sinusoid and the end-point discontinuities occur in the output signal [14].

The impacts of the finite length window and end-point discontinuities are, firstly, signal energy
leakage over a wider frequency band, and secondly, the main-lobe of a small magnitude signal
component can interfere with the side-lobes of a greater magnitude component. As a result,
the smaller magnitude signal can be concealed.

To solve the end-point effect problem, we use windows gently dropping to zero, such as the Han-
ning and Hamming windows characterized by Eq. (2.24) and Eq. (2.25), respectively [14].
The price we pay for the smaller end-point effect is approximately twice as large the main lobe
width in comparison to the rectangular window [4].

wHan(n) = 0.5 − 0.5
cos 2πn

N
for 0 ≤ n ≤ N − 1 (2.24)

wHam(n) = 0.54 − 0.46
cos 2πn

N
for 0 ≤ n ≤ N − 1 (2.25)

2.2.4 Short-Time Fourier Transform (STFT)

The prior assumption of the FT is signal stationariness [14], i.e. the signal statistics, such as
the power and the power spectrum, do not vary much over time. The FT assumes that all
detected frequencies occur at all times in a signal, which is not so for non-stationary signals.
In other words, the FT does not provide us with any time information about the occurrence
of the frequencies present in a signal. And thus the inverse FT would reconstruct the signal
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assuming, that all frequencies are present in the signal at all times. This shortcoming is partially
compensated by the short-time Fourier transform (STFT) also called the windowed Fourier
transform [6, 2], introduced by Dennis Gabor in 1946.

The STFT employs the windowing technique. The width of the time window is established
short enough so as each chosen segment of a signal constrained by the window can be assumed
stationary. The STFT is calculated as the inner product (see Sec. 2.3) of a signal and a windowed
exponential in the time domain. The STFT X(u, ξ) of a signal x(t) is given by the following
equation [6]:

X(u, ξ) =
∫ +∞

−∞
x(t)w(t− u)e−iξtdt (2.26)

where u denotes the position of the centre of the window and ξ is the corresponding radian
frequency.

The STFT computation runs as follows. We start with the window’s centre situated at the be-
ginning of the signal x(t = 0). Then we multiply the signal by the window function w(t) and
compute the FT of the product to obtain the STFT coefficient. After that, we shift the window
for some u1 samples and obtain another STFT coefficient. We repeat this procedure until we
reach the end of the signal. The length of the shifting interval u1 is adjusted in order to make
the window positions overlap so as the continuity is preserved.

The narrower the window the better the time resolution, but the poorer frequency resolution.
Establishing the appropriate window width is quite difficult. The size of the window is fixed,
which produces constant resolution at all times and frequencies. Changing the size would in-
crease the accuracy either in time or in frequency. If we reduce the window width to the Dirac
δ(t − u), we will obtain a perfect resolution in time. On the other hand, we will ruin the fre-
quency resolution, since the FT of the Dirac is the function e−iuω which is uniformly spread
over all frequencies [13].There is a trade-off between the time and frequency resolution called
the Heisenberg’s uncertainty principle [14] stated by

ΔT Δf = 1 (2.27)

where the frequency resolution is Δf and the time resolution ΔT = N Ts. N is the discrete
window length, i.e. the number of samples of the window, and Ts is the sampling period, i.e.
the continuous time interval between successive samples.

2.2.5 DFT Applications

Prior to windowing, in Matlab, we have to modify the frequency spectrum using the command
fftshift. This command moves the zero-frequency point of the FT into the centre of the spectrum.
Fig. 2.8 displays the DFT of the signal composed of two frequencies without and with fftshift,
respectively.

In the two-dimensional case, the fftshift function moves the zero-frequncy point of the FT
into the centre of the spectrum, by swopping the first with the third quadrant, and the second
with the forth quadrant, as depicted in Fig. 2.9.

Fig. 2.11 shows removing of a high frequency component from the signal using a rectangular
frequency window. In Fig. 2.11b, the blue full line displays the FT of the signal containing two
different frequencies, and the red dash line displays the rectangular window. The Matlab code
is displayed in Fig. 2.10.
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FIGURE 2.8. FT of 1D signal with and without fftshift command.
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FIGURE 2.9. FT of 2D signal with and without fftshift command.

% 1D DFT: DENOISING IN FREQUENCY DOMAIN

% SIGNAL GENERATION

N=300; n=[0:N-1]’; x=sin(2*pi*0.05*n)+sin(2*pi*0.3*n);

% DFT AND FFTSHIFT

X=fft(x-mean(x)); Xs=fftshift(X);

% WINDOWING

wc=0.2, NN=wc*N; NN=round(NN) % wc=corner frequency, NN=window length

nn=[0:NN-1]’; W=[ones(NN,1);zeros(N-2*NN+1,1);ones(NN-1,1)]; % window design

Y=X.*W;

% INVERSE DFT

y=ifft(Y); y=y+mean(y);

FIGURE 2.10. Matlab code for 1D signal denoising by frequency windowing.
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FIGURE 2.11. 1D signal denoising by frequency windowing.

Fig. 2.13 pictures removing of a high frequency component from the 2D signal using a rect-
angular frequency window extended to two dimensions. The figure shows clockwise the signal
containing two frequencies, the FT of the signal, the FT of the signal being windowed, the FT
of the signal after windowing, and finally, the signal after windowing. Fig. 2.12 shows how
the Matlab code runs.

% 2D DFT: DENOISING IN FREQUENCY DOMAIN

% SIGNAL GENERATION

N=64; n=[0:N-1]’; M=64; m=[0:M-1]’;

x1=sin(2*pi*0.05*n)+sin(2*pi*0.3*n);

x2=sin(2*pi*0.05*m)’+sin(2*pi*0.3*m)’; X=x1*x2;

X=(X-min(min(X)))/(max(max(X))-min(min(X))); % normalization

% DFT AND FFTSHIFT

XX=fft2(X-mean(mean(X))); Xs=fftshift(XX);

% WINDOWING

W=ones(N,M); a=18; W([1:a N-a+2:N],:)=0; W(:,[1:a N-a+2:N])=0; % window design

Xw=Xs.*W;

% INVERSE DFT

Xws=ifftshift(Xw); Z=ifft2(Xws+mean(mean(Xws))); Z=real(Z);

Z=(Z-min(min(Z)))/(max(max(Z))-min(min(Z))); % normalization

FIGURE 2.12. Matlab code for 2D signal denoising by frequency windowing.
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FIGURE 2.13. 2D signal denoising by frequency windowing.
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2.3 Time-Scale Signal Analysis

2.3.1 Multiresolutional Signal Analysis

Wavelets and Multiresolutional Analysis (MRA)

In the 19th century, Fourier invented signal frequency analysis. In 1909, Alfred Haar laid
the foundations of wavelet analysis, although he did not use this term. The word wavelet means
”a small wave”, i.e. an oscillatory function of an effectively limited length. Wavelets have com-
pact support, which means that they are zero outside of a bounded domain called a compact
set [15, 5].

Wavelets are either real or complex functions, and are usually irregular and asymmetric. Only
very few wavelets have an analytical expression. Mostly, they are expressed as piecewise polyno-
mials, such as the Haar wavelet, the Morlet wavelet, the Mexican Hat wavelet or the Daubeschies
wavelets [5].

In contrast to the FT, wavelets are utilised for non-stationary signals with transitory phe-
nomena. The frequency response of these signals varies in time, i.e. these signals have quick
local variations. By the FT analysis, a signal is decomposed into sine waves of various frequen-
cies. Whereas, in the wavelet analysis, a signal is decomposed into scaled and shifted versions
of the mother wavelet [5].

The convolution of a signal with a scalable modulated window produces the Multiresolutional
Analysis (MRA) of the signal. In other words, MRA is a time-scale representation of the anal-
ysed signal for every resolution.

A signal is analysed at different frequencies with different resolutions. At high frequencies,
we obtain a good time resolution and a low frequency resolution. On the contrary, at low
frequencies, we obtain a good frequency resolution, but a poor time resolution. This trade-
off is mostly convenient in practise because the majority of signals we work with contain low
frequency components of long duration (and so a good time resolution is not necessary), and
high frequency components of short duration (a good time resolution is provided). These high
frequency components, so-called details, represent the main information contained in the signal.

Continuous Wavelet Transform (CWT)

A real mother wavelet function ψ(t) is a real square integrable function, i.e. ψ(t) ∈ L2(R)
with a zero average and a norm ‖ψ‖=1, centred in the neighbourhood of t=0. The term
mother reflects the fact, that other wavelets belonging to a given wavelet family are derived
from ψ by scaling and translating [6] given by

ψu,s(t) =
1√
s
ψ
(
t− u

s

)
(2.28)

In Eq. (2.28), the translation u ∈R represents the location of ψ(t) of a certain scale s ∈R+−{0},
which is shifted along the signal in time (or space). For each shift, we calculate one wavelet
coefficient as a measure of similarity between the wavelet and the corresponding segments
of the signal. If the signal energy and the wavelet energy are normalised to 1, the wavelet coef-
ficients become the correlation coefficients. When we reach the end of the signal, we change s,
return to the beginning of the signal and repeat the computation procedure all over again [5].

The continuous wavelet transform (CWT) of a signal x ∈ L2(R) for a translation u and scale
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s is given by [6]

W ψ
x (s, u) = 〈x, ψu,s〉 =

∫ +∞

−∞
x(t)

1√
s
ψ∗
(
t− u

s

)
dt (2.29)

where the angle brackets denote the inner product. By definition, the L2-inner product of two
complex functions f and g on a measure space X with respect to the measure μ is given by [15]

〈f, g〉L2 =
∫
X
f g∗ dμ (2.30)

where the star symbol denotes the complex conjugate. Eq. (2.29) can be also interpreted as
a convolution of a signal and a dilated band-pass filter, since the wavelet function ψ has a band-
pass like spectrum ψ̂(ω) as described below when discussing wavelet properties.

The scale s is inversely proportional to radian frequency ω. As a result, low frequencies corre-
spond to high scales. When using high scales, ψ is dilated or stretched out. By wavelet analysis
at high scales, we extract global information from a signal. On the contrary, high frequencies
correspond to low scales. ψ is contracted or compressed. And by wavelet analysis at low scales,
we extract detail information from a signal. Fig. 2.14 displays scaling of the wavelet having
an analytical expression designed by Prof Newland. Dilation in time compresses the frequency
spectrum ψ

(
t
s

)
↔ |s| ψ̂(sω) [6].
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FIGURE 2.14. Time dilation of Newland wavelet and compression of its frequency spectrum.

Signals are usually band-limited, which is equivalent to having finite energy, and therefore we
need to use just a constrained interval of scales. We start the CWT computation with s=1, i.e.
with the most dilated ψ, and continue by increasing the scale, i.e. compressing ψ. This way,
we start the analysis at high frequencies and proceed towards lower frequencies.

The CWT coefficients are a measure of similarity (correlation) in the frequency content between
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a wavelet and a signal. The coefficients have large values at a certain location, if a signal contains
a current scale at this location.

The CWT is reversible if the admissibility condition is fulfilled. The basis functions do not even
have to be orthonormal. For a signal x of finite energy, the inverse CWT [2] runs

x(t) =
1

Cψ

∫ +∞

−∞

∫ +∞

−∞
W ψ
x (s, u)

1√
s
ψ
(
t− u

s

)
ds du

s2
(2.31)

Where Cψ is a constant depending on the kind of the wavelet function ψ [2]

Cψ = 2π
∫ +∞

−∞
|ψ̂(ω)|2
|ω| dω (2.32)

By saying that x has finite energy, we mean that its L2-form is finite, see Eq. (2.33). Natural
signals usually satisfy this condition [13].

∫ ∞

0
| x(t)|2 dt <∞ (2.33)

In the CWT, u and s are continuous. In fact, because of a computers use, u and s are sampled
with a small enough step size, that they can still be considered continuous.

Wavelet Properties

The first property we shall discuss here is the compact support of the wavelet function. We say
that a wavelet has compact support, if the wavelet if zero outside a closed interval. This char-
acteristic corresponds to the impulse response of the FIR filter. However, wavelets need not
have compact support. They can also correspond to the IIR filters [2].

Other desired properties are orthogonality and orthonormality of wavelets. Two functions ψk(t)
and ψl(t) are orthogonal to each other over the interval [a,b] if their inner product is zero.

〈ψk(t), ψl(t)〉 =
∫ b

a
ψk(t)ψ

∗
l (t) dt = 0 (2.34)

A set of functions {ψk}, k = 1, 2, 3, ... is orthonormal over the interval [a,b], if they are nor-
malised and orthogonal to each other, as expressed by the following expression.

〈ψk(t), ψl(t)〉 =
∫ b

a
ψk(t)ψ

∗
l (t) dt = δkl (2.35)

where δkl denotes Kronecker delta function defined as

δkl =

{
1 for k = l
0 for k �= l

(2.36)

For orthonormal basis, the wavelet transform (WT) coefficients are given by a linear combi-
nation of the basis functions. In some applications, orthonormal bases are not available, and
therefore we employ biorthogonal bases, which are two bases orthogonal to each other, but each
do not form an orthogonal set. Sometimes, even biorthogonal bases are not available, so we use
frames [8].
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The admissibility condition stated in Eq. (2.37) is one of the basic assumptions of no information
loss during signal analysis and subsequent synthesis [13].

∫ | ψ̂(ω)|2
|ω| dω < +∞ (2.37)

where ψ̂(ω) is the FT of ψ(t). As an implication, ψ̂(ω) vanishes at ω = 0, which shapes
the wavelet spectrum to a band-pass [13]:

| ψ̂(ω)|2| ω=0 = 0 (2.38)

As a result of Eq. (2.38) in the time domain, the average value of ψ(t) equals zero, which
means that the wavelet is oscillatory [13]:

∫
ψ(t) dt = 0 (2.39)

The regularity condition is linked to the smoothness of the wavelet and the decay of |ψ̂(ω)|
for large ω, i.e. fine scales, which is desired to be fast [6, 13]. We shall describe regularity using
the concept of vanishing moments. A function ψ has p vanishing moments if [6]

∫ ∞

−∞
tk ψ(t) dt = 0 for 0 ≤ k < p (2.40)

The k-th vanishing moment Mk is given by [6]

Mk =
∫ ∞

−∞
tk ψ(t) dt for k ∈ Z∗ (2.41)

where Z∗ stands for the nonnegative integers. We can express the wavelet transform of a signal
x using the Taylor series until order n at a time t = 0 and for u = 0 [13]

W ψ
x (0, s) =

1√
s

[
n∑
k=0

x(k)(0)
∫
tk

k!
ψ
(
t

s

)
dt+O(n+ 1)

]
(2.42)

where x(k) stands for the k-th derivative of x and O(n + 1) denotes the remainder of the
expansion. We can rewrite this equation using the moments Mk [13]

W ψ
x (0, s) =

1√
s

[
n∑
k=0

x(k)(0)
Mk

k!
sk+1 +O(sn+2)

]
(2.43)

As implied by the admissibility condition, M0 = 0. If all the other moments vanish to zero then
the wavelet coefficients W ψ

x decay as quick as sn+2 for x n-times differentiable at t = 0 [13].
To sum this concept up, if the signal x is regular and the wavelet ψ has enough vanishing
moments then the wavelet coefficients are small at fine scales [6].

The number of vanishing moments p and the support size of orthogonal wavelets are actually
independent except the constriction saying that the support is at least equal 2p−1. The minimal
support size 2p− 1 applies to Daubeschies wavelets [6].

Wavelets themselves are often used to study regularity of signals [5].
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Scaling Function

If we have wavelet coefficients only for scales s < s0, for signal reconstruction, we need a comple-
ment to these coefficients for s > s0, which is provided by the scaling function φ. The function
φ was introduced by Stephane Mallat in 1989. The modulus of its Fourier transform φ̂(ω) is
given by [6]

| φ̂(ω)|2 =
∫ +∞

1
| ψ̂(sω)|2 ds

s
=
∫ +∞

ω

| ψ̂(ξ)|2
ξ

dξ (2.44)

where ξ = sω. Similarly to the wavelet function ψ, we can state the admissibility condition
for the scaling function φ [6] ∫

φ(t) = 1 (2.45)

As a consequence, the 0th moment of φ cannot obviously vanish to zero. The scaling function
represents a low-pass filter or an averaging filter and all the dilated wavelets form band-pass
filters, hence all these functions compose a filter bank.

The scaling function is associated with the wavelet function, but not for every wavelet [5].

Discrete Wavelet Transform (DWT)

The CWT provides us with lots of redundant information, which is costly in terms of compu-
tation time, but on the other hand, all information is very clearly visible. The discrete wavelet
transform (DWT) requires less space utilising the space-saving coding based on the fact that
wavelet families are orthogonal or biorthogonal bases, and thus do not produce redundant anal-
ysis. In addition, to save some more memory space, we can neglect the coefficients of a very
low value without a significant information loss.

The DWT introduced by Eq. (2.46) corresponds to the CWT sampled usually on a dyadic grid,
which means powers of two, so as s=2j and u= k 2j, where t is continuous time and j, k ∈ Z
[13].

ψj,k(t) =
1√
2j
ψ

(
t− k 2j

2j

)
(2.46)

In contrast to WT, the FT basis functions eiωt are perfectly localised in frequency but they
extend over all time. Wavelets are not at a single frequency, or even a finite range, but they
are limited to finite time. As we rescale, the frequency goes up by 2j and the time interval
goes down by 2j. This suggests that the product of the frequency and time interval is a stable
quantity [2], see the Heisenberg’s uncertainty principle in Subsec. 2.2.4.

In practise, the DWT is obtained by passing a signal successively through low-pass and high-
pass filters. This computation algorithm is called the subband coding. Passing a signal x through
a filter corresponds to the convolution of x with the impulse response of the filter ld [8]

x[n] ∗ ld[n] =
∞∑

k=−∞
ld[k] x[n− k] (2.47)

where n denotes discrete time sampled from t. By the filtering process, the resolution is altered.
The scale is changed by subsampling, i.e. either upsampling or downsampling. Upsampling
by 2 means adding a new sample (a zero or an interpolated value) between every 2 samples.
Downsampling by 2 is implemented by excluding every other sample.

When a signal sampled at the Nyquist’s rate, see Subsec. 2.2.1, it is passed through a half-band
low-pass filter and the highest frequency component fmax is halved fmax = π → π

2
. Conse-
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quently, in keeping with the Nyquist’s rule, the minimal sampling frequency fs of the signal
can decrease by half fs = 2π → π. We achieve to halve fs and simultaneously to double the scale
by downsampling by 2. Through the filtering, we loose half of the samples and also the higher
half of the frequency spectrum of the signal. As a result, the time resolution is halved and
the frequency resolution is doubled. This procedure can be described by the following equation,
where A1 is the low-pass filter output [8] equivalently the approximation coefficients of the de-
composition level 1.

A1[n] =
∞∑

k=−∞
ld[k] x[2n− k] (2.48)

The subband coding algorithm, designed by S. Mallat in 1988, is shown in Fig. 2.15. The out-
puts of the high-pass and the complementary low-pass filter are called approximations and
details, respectively. In order to work efficiently, the length of the input x should be a power
of 2 (i.e. 2j) or at least a multiple of a power of 2 (i.e. k 2j). The length of x equals the num-
ber of the DWT coefficients. However, the filters are not ideally narrow-band, and thus due
to the convolution, we obtain some more coefficients before the beginning and beyond the end
of the signal. These coefficients need to be neglected.
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FIGURE 2.15. 1D DWT 3-level decomposition scheme.

Fig. 2.15 displays the wavelet decomposition tree. The decomposition is indefinite in theory,
however, for real computations, it ends when only one detail coefficient is left. The number
of decomposition levels depends on the kind of the signal or on a chosen criterion, such as
entropy [5].

The impulse response of the low-pass filter ld forms the scaling function [6] and produces
the approximations A. The high-pass filter hd represents the wavelet function and generates
the details D. The impulse responses of both filters are dependent on each other as stated in
the following equation [8].

hd[L− 1 − k] = (−1)k ld[k] (2.49)
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where L is the filter length. The two following equations describe the DWT analysis, which
means filtering the signal and downsampling the result by 2 [8].

D1[n] =
∞∑

k=−∞
hd[k] x[2n− k] (2.50)

A1[n] =
∞∑

k=−∞
ld[k] x[2n− k] (2.51)

Half-band filters form orthonormal bases, and therefore make the reconstruction easy. The syn-
thesis consists of upsampling by 2 and filtering [8]:

x[n] =
∞∑

k=−∞
(D1[k] hr[2k − n] + A1[k] lr[2k − n]) (2.52)

The reconstruction filters lr and hr and identical with the decomposition filters ld and hd,
respectively, except the reverse time course. These two pairs of filters are called the Quadrature
Mirror Filters (QMF). The decomposition QMF determine the wavelet’s shape by upsampling
the high-pass filter coefficients vector and convolving the result with the original filter. This is
repeated in several iterations. The scaling function is derived analogously from the low-pass
filter [5].

The filter choice is of a great importance. Filters are never ideally half-band, which fact makes
synthesis difficult. We need use non-ideal filters forming the QMF to cancel out the aliasing,
which originates from the downsampling during the decomposition. These filters attain to pro-
duce perfect signal reconstruction from the DWT coefficients provided that the signal is of finite
energy, and that the wavelet satisfies the admissibility condition as usual wavelets do [5].

Wavelet Packets

The wavelet packets analysis are similar to the wavelet analysis, except that details coefficients
vectors are also decomposed as shown in Fig. 2.16 [5]. The number of decomposition levels may
be determined for example by an entropy-based criterion.

Wavelet Families

The two main wavelet functions, we use in this thesis are firstly the Haar wavelet and secondly
the Daubeschies wavelet of order 2 abbreviated as db2. The Haar wavelet is the oldest and
the simplest wavelet function. It is compactly supported, orthogonal and discontinuous, which
makes an exception from other wavelet functions. The Haar wavelet is sometimes denoted as
db1 wavelet. In this work, it is used for edges detection in images. The Haar wavelet ψ and its
scaling function φ shown in Fig.2.17 have an explicit expression given as [5]

ψ(t) =

⎧⎪⎨
⎪⎩

1 for t ∈ 〈0, 0.5)
−1 for t ∈ 〈0.5, 1〉
0 otherwise

(2.53)

φ(t) =

{
1 for t ∈ 〈0, 1)
0 otherwise

(2.54)
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FIGURE 2.16. 1D wavelet packets 3-level decomposition scheme.
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FIGURE 2.17. Haar wavelet and its scaling function.

Daubeschies wavelets (DbN) are compactly supported orthogonal wavelets, where N denotes
the number of vanishing moments. db1, i.e. the Haar wavelet, is discontinuous and with increas-
ing N , the regularity increases. Some of dbN are less some are very far from symmetry. Except
the Haar wavelet, dbN have no explicit expression. They are given by 2N non-zero coefficients.
In this work, db2 wavelet is used for image denoising. Fig. 2.18 showing db2, its scaling function
and the corresponding frequency spectra is created according to Matlab help for a function orth-
filt [5], which computes the decomposition and reconstruction filters associated with the scaling
filter corresponding to a wavelet.

Wavelets Applications

In signal processing, wavelets are used for many purposes [5]. Such as denoising, detecting
trends, breakdown points, discontinuities in higher derivatives and self-similarity in signals.
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FIGURE 2.18. Daubeschies wavelet of order 2, its scaling function and frequency spectra.

Fig. 2.19 and the enclosed Matlab code in Fig.2.20 demonstrate wavelet use on impulse detec-
tion, i.e. detection of a discontinuity in frequency.
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FIGURE 2.19. Discontinuity detection using CWT and DWT.

In image processing, wavelets are used for instance for edges detection, watermarking, texture
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% CWT & DWT: SIGNAL ANALYSIS - DISCONTINUITY DETECTION

% ANALYSED SIGNAL WITH A DISCONTINUITY (IMPULSE)

N=128; n=[0:N-1]; x=sin(2*pi*0.02*n); x(64)=x(64)+1;

figure(1),subplot(311), stem(x)

% CWT COMPUTATION AND COEFFICIENTS PLOT

subplot(312), c=cwt(x,1:16,’db2’,’plot’);

set(gca,’YTickLabel’,[]) % set y-axis tick label, gca=get current axis

% DWT COMPUTATION

[c,l]=wavedec(x,4,’db2’); % Levels 1 to 4 correspond to scales 2, 4, 8, 16.

% DWT COEFFICIENTS EXPANSION FOR PLOT

cfd=zeros(4,N);

for k=1:4

d=detcoef(c,l,k); % extract the detail coefficients at level k from

% the wavelet decomposition structure [c,l], d is a vector

d=d(ones(1,2^k),:); % d -> matrix (the same values in each column)

cfd(k,:)=wkeep(d(:)’,N); % extract the vector cfd (of length N) from

% the central part of the vector d as its ; cfd is a row vector

end

% DWT COEFFICIENTS PLOT

subplot(313), colormap(pink(64))

img=image(flipud(wcodemat(cfd,64,’row’))); % flipud = Flip matrices up-down

% wcodemat = extended pseudocolor matrix scaling (row-wise)

set(get(img,’parent’),’YtickLabel’,[]); % specify y-axis tick labels (empty)

FIGURE 2.20. Matlab code for discontinuity detection using CWT and DWT.

detection (see Chap. 5), compression, denoising, and coding of interesting features for subse-
quent classification [5]. Image and signal denoising by thresholding DWT coefficients is discussed
in the following chapter.

2.3.2 Multiresolutional Image Analysis

To compute the two-dimensional DWT of an image, we decompose the approximations at level j
to obtain four matrixes of coefficients at level j+1. These four matrixes for single level decompo-
sition using db2 are displayed in Fig. 2.21 denoted as the approximations A1 and the horizontal
H1, vertical V1 and diagonal details D1 of level 1.

As shown in the scheme in Fig. 2.22, first, we convolve the rows of the image, or generally
the matrix of the approximations at level j, with a low-pass and a high-pass decomposition
filter ld[n] and hd[n], respectively. Then we downsample both resulting matrixes by 2 keeping
every even column. Second, we filter each of the matrixes by their columns using the previously
mentioned filters. Then we downsample all four resulting matrixes by 2 keeping every even
row to obtain four matrixes of one-level decomposition coefficients, or generally four matrixes
of (j+1)-level coefficients [5]. We can also reconstruct the image by using these coefficients
matrixes, upsampling by 2 and the reconstruction filters lr[n] and hr[n]. .
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FIGURE 2.21. 2D DWT 1-level decomposition.
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FIGURE 2.22. 2D DWT 1-level decomposition and reconstruction scheme.
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3

Wavelet Transform in Signal and Image
Processing

3.1 Signal Decomposition, Thresholding, and Reconstruction

Signal denoising using the DWT consists of the three successive procedures named in the title
of this section, i.e. signal decomposition, DWT coefficients thresholding, and signal reconstruc-
tion. Firstly, we carry out the wavelet analysis of a noisy signal up to a chosen level N . Secondly,
we perform thresholding of the detail coefficients at levels from 1 to N . Lastly, we synthesize
the signal using the altered detail coefficients of levels from 1 to N and approximation coeffi-
cients of level N [5].

First of all, we introduce the model of a noisy 1D signal xn(n) and an image In(i, j) [5]

xn(n) = x(n) + s e(n) (3.1)

In(i, j) = I(i, j) + s e(i, j) (3.2)

where n, i and j are equally spaced time or space coefficients, x and I are clean signals, which
are to be recovered from xn and In, respectively, by removing the noise e. However, it is generally
impossible to remove all the noise without corrupting the clean signal. In the simplest case,
e is supposed to be a Gaussian white noise of amplitudes from 0 to 1, and s is a noise level
assumed to equal 1.

As for thresholding, we can settle either a global threshold of a constant value for all levels or
a level-dependent threshold vector of length N . According to D. Donoho’s method, the threshold
estimate δ for denoising with an orthonormal basis is given by [2]

δ = σ
√

2 logL (3.3)

where the noise is Gaussian with standard deviation σ of the DWT coefficients and L is the num-
ber of samples or pixels of the processed signal or image. This estimation concept is used by
Matlab.

From another point of view, thresholds can be either soft or hard as shown in Fig. 3.1 and
Fiq. 3.2 and given by the following expressions [2]

yhard(n) =

{
xn(n) for | xn(n)| > δ

0 for | xn(n)| ≤ δ
(3.4)

ysoft(n) =

{
sign(xn(n)) (| xn(n)| − δ) for |xn(n)| > δ

0 for | xn(n)| ≤ δ
(3.5)

Hard thresholding zeroes out all the signal values smaller than δ. Soft thresholding does the
same thing, and apart form that, subtracts δ from the values larger than δ. In contrast to hard
thresholding, soft thresholding causes no discontinuities in the resulting signal. In Matlab,
by default, soft thresholding is used for denoising and hard thresholding for compression [5].
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FIGURE 3.1. Soft and hard thresholding for linear signal.
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FIGURE 3.2. Soft and hard thresholding for sinusoidal signal.

An example of Electrocardiogram (ECG) signal denoising is displayed in Fig. 3.3. Removing
of artificially added white noise is carried out by soft global thresholding of the DWT coefficients
either up to level 2 or 4. In the former case, the main peaks’ magnitudes of the denoised signal
nicely correspond to those of the original one. However, the clean signal still contains a big
amount of noise. In the latter case, the main peaks’ magnitudes of the denoised signal are
depressed. The clean signal contains less noise, but on the other hand, it lacks some of the detail
information. The Matlab code is enclosed, see Fig. 3.4. Fig. 3.5 shows a plot of the DWT
coefficients of levels 1 to 4 and the global threshold δ. The magenta vertical lines divide five
sets of the DWT coefficients, i.e. from left to right, approximations at level 4A4, details at level 4
D4, details at level 3 D3 etc.



3. Wavelet Transform in Signal and Image Processing 41

0 50 100 150 200 250 300 350 400 450 500
−500

0

500

1000

1500

 (a) ORIGINAL, NOISY AND CLEAN ECG SIGNAL (DB2, LEVEL 2)

original ECG
noisy ECG
clean ECG

0 50 100 150 200 250 300 350 400 450 500
−500

0

500

1000

1500

 (b) ORIGINAL, NOISY AND CLEAN ECG SIGNAL (DB2, LEVEL 4)

time

original ECG
noisy ECG
clean ECG

FIGURE 3.3. ECG signal denoising by thresholding DWT coefficients up to levels 2 and 4.

% ECG SIGNAL DENOISING BY THRESHOLDING DWT COEFFICIENTS

ecg=load(’ECG01.TXT’); ecg=ecg(100:611); % load ecg signal, take 512 samples

L=length(ecg); ecg=detrend(ecg); % remove a linear trend

ecgN=ecg; ecgN=ecg+150*randn(L,1); % add random noise

% DWT USING ’DB2’ UP TO LEVELS 2 AND 4 (GLOBAL THRESHOLDING)

[THR,SORH,KEEPAPP]=ddencmp(’den’,’wv’,ecgN) % find default values

% for denoising -> soft threshold

[ecgC1,CecgC,LecgC,PERF0,PERFL2]=wdencmp(’gbl’,ecgN,’db2’,2,THR,SORH,KEEPAPP);

[ecgC2,CecgC,LecgC,PERF0,PERFL2]=wdencmp(’gbl’,ecgN,’db2’,4,THR,SORH,KEEPAPP);

FIGURE 3.4. Matlab code for ECG signal denoising by thresholding its DWT coefficients up to levels 2
and 4.
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FIGURE 3.5. ECG signal DWT coefficients up to level 4 and their thresholding.
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3.2 Image Denoising

Denoising by thresholding DWT coefficients in two-dimensional space is analogical to that
in one dimensional space discussed in the previous section. A practical example demonstrates
denoising of the MR image of the spine. In this case, wavelet decomposition runs to level 2
using db2 wavelet. We employ soft global thresholding of detail coefficients (see Fig. 3.8) and
Donoho’s threshold level estimate given by Eq. (3.3). Decomposition of the given MR image and
the thresholding result are displayed in Fig. 3.6. The main part of the Matlab m-file without
potting commands is shown in Fig. 3.7.

 (a) GIVEN IMAGE  (b) DECOMPOSITION  (c) RECONSTRUCTION

FIGURE 3.6. MR image denoising by thresholding DWT coefficients up to level 2.

% MR IMAGE DENOISING BY THRESHOLDING DWT COEFFICIENTS

load(’MRpater004.mat’), A=im2double(A); % given image definition

A=A(64:191,64:191); % image cut

% DWT DECOMPOSITION TO LEVEL 2

level=2, wavelet=’db2’ % decomposition parameters

[c,s]=wavedec2(A,2,’db2’);

s2=s(2:level+1,1)’; s2=[s2; s2; s2]; s2=[s(1);s2(:)]; ss=s2.^2;

% THRESHOLDING DETAIL COEFFICIENTS

THR=ddencmp(’den’,’wv’,A); % global estimate of thresholds

k=find(abs(c(s(1,1):length(c)))<=THR); cd(k)=0; % threshold only details

k=find(abs(c(s(1,1):length(c)))>THR);

cd(k)=sign(c(k)).*(abs(c(k))-THR); % soft thresholding

% IMAGE RECONSTRUCTION

Z=waverec2(cd,s,wavelet); [m,n]=size(Z); mZ=mean2(Z);

Z([1:4,m-3:m],:)=mZ; Z(:,[1:4,n-3:n])=mZ; % image frame

FIGURE 3.7. Matlab code for MR image denoising by thresholding DWT coefficients up to level 2.
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FIGURE 3.8. MR image denoising DWT coefficients up to level 2 and their thresholding..

3.3 Wavelet Transform (WT) in Signal and Image Feature Extraction

Wavelet decomposition coefficients to a selected level can be used for signal or image specifi-
cation, which is based on assigning certain values called features to a signal or image. This is
highly utilised in feature based image segmentation (FBIS) introduced in Chap. 5.

Due to the wavelet transform (WT), we obtain multiscale representations characterising the im-
age content over a number of resolutions. For finer scales, the WT coefficients represent details
in an image. For coarser scales, the coefficients represent the dominant visual information
of an image and demand less computation time. This enables rough estimates of the contents
by computing larger scale coefficients, and thus increases computational efficiency [10].

Another advantage of multiscale representation is the possibility of texture modelling. Whereas
colour is point-specific, texture occurs in a range of scales. The output of multiscale repre-
sentation, i.e. texture features vectors, can be modelled by Markov-based frameworks. For in-
stance, the Hidden Markov tree (HMT) models comprehend the WT coefficients as realisations
of a set of statistical distributions. These models are commonly used for grey-scale image
segmentation based on wavelet decomposition. They capture substantial statistical relations
of the DWT coefficients. Apart from this application, the HMT is widely used in signal pro-
cessing for signal estimation, denoising, classification and audio signals and image segmentation.

The WT is advantageous also for its good performance in compression [10] and the possibility
of choosing the wavelet function most suitable for a given application. However, the choice
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of the wavelet is not of too great influence on texture analysis [1].

The discrete wavelet transform (DWT) as a texture feature extraction method [10] has two
particular disadvantages. First, it is the lack of shift invariance, i.e. a small shift in the input
entails large changes in the output. The undecimated form of DWT may be the solution,
however, it causes big redundancy, and thus increases computation cost. Second, it is the poor
directional selectivity. The DWT features are unable to distinguish diagonal edges orientation
(±45◦).

To overcome these both drawbacks, pyramid-structured WT (PWT) and tree-structured WT
(TWT) [1] have been developed. The PWT recursively decomposes the approximation coef-
ficients, however most of the textures have the important information in medium frequency
bands. The TWT decomposes also details (horizontal, vertical, and diagonal) when necessary.
For instance the dual-tree complex wavelet transform (DT-CWT) represents a very efficient fea-
ture extraction tool utilised in image retrieval [10]. However, we apply only the DWT in this the-
sis.

From the wavelet coefficients, the feature vectors can be obtained through various procedures.
We can for instance compute the mean and standard deviation of the energy distribution of each
subband at each decomposition level. It is also possible to use summed squared diagonal detail
coefficients (see Fig. 2.21) of the highest decomposition level to characterise fast frequency com-
ponents in images. This method of feature computation proves to be efficient as also presented
in Chap. 5.

.



46 3. Wavelet Transform in Signal and Image Processing



4. Image Segmentation Using the Watershed Transform 47

4

Image Segmentation Using the Watershed
Transform

Image segmentation is one of the basic initial steps in image processing. This chapter deals
with the watershed transform, which is a widely used tool for image segmentation, along with
some other associated techniques. Sec. 4.5 studies the negative impact of noise on watershed
segmentation and the improvement after image denoising in frequency and time domain.

To clarify the purpose of watershed segmentation, it may be used as outlined in Chap. 1 prior
to feature based image classification in the following manner. We extract features of the origi-
nated segments using the discrete Fourier transform (DFT) or alternatively the discrete wavelet
transform (DWT), both described in Chap. 2. As a result, each segment is characterized with 2
or 3 features invariant with respect to translation and rotation. Subsequently, the segments are
classified in accordance with their features by self-organising neural networks (NN). However,
feature based classification using NN is beyond the scope of this work, which only presents
watershed segmentation as an alternative and complement of feature based image segmentation
(FBIS) discussed in Chap. 5.

4.1 Watershed Transform

The watershed transform [9] interprets grey-scale images as three dimensional surfaces. Same
as in geography, watershed ridge lines represent boundaries dividing drainage areas of different
rivers called the catchment basins. Rain falling within these boundaries is collected in the actual
basin. When falling on a ridge line, there is the same likelihood for the rain to be drained
into either of the basins sharing the boundary. The catchment basins are the regions in the image
we aim to identify by segmentation.

For watershed segmentation using Matlab, the function watershed [11] may be employed.
This function finds the watershed ridges in images, assigns zeros to them, and labels the pixels
of each region with the same integer value. Pixels belonging to the first segment are labeled
with ones, in the second with twos and so on.

Prior to the watershed transform, images need to be preprocessed by one or more chosen
methods described below. In this work, we use particularly the distance transform.

4.2 Distance Transform

The distance transform (DT) precedes the watershed transform to preprocess images [9]. As
an input this transform requires binary (black-and-white) images. If necessary, images are
converted to the binary form using a threshold of a certain level.

In Matlab, the DT is computed by the command bwdist [11]. This command calculates the Eu-
clidean distance from every pixel to the nearest non-zero-valued pixel. One-valued pixels (white
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colour) are assigned with zeros (black colour). Fig. 4.1 pictures the distance transform of the ma-
trix F of size 16 × 16. Before computing the DT, a grey-scale matrix is firstly converted
into black-and-white. To reveal the DT computation, we show the 5 × 5 cut of the matrix F ,
i.e. the black-and-white cut Fbw and its distance transform Fdt. Fig. 4.2 displayes the Matlab
code computing the DT of F and defining the position of the cut.

Fbw =

⎡
⎢⎢⎢⎢⎢⎢⎣

0 0 1 1 0
0 0 1 1 0
0 0 1 0 0
1 1 1 1 1
0 0 0 1 0

⎤
⎥⎥⎥⎥⎥⎥⎦
Fdt =

⎡
⎢⎢⎢⎢⎢⎢⎣

0.2828 0.1414 0 0 0.1414
0.2828 0.1414 0 0 0.1414
0.1414 0.1414 0 0.1414 0.1414

0 0 0 0 0
0.1414 0.1414 0.1414 0 0.1414

⎤
⎥⎥⎥⎥⎥⎥⎦

 (a) ORIGINAL MATRIX  (b) BLACK & WHITE  (c) DISTANCE TRANSF.

FIGURE 4.1. Distance transform.

% DISTANCE TRANSFORM: SIMPLE EXAMPLE

% MATRIX F (16x16)

F=zeros(16,16); F(3,4:15)=rand(1,12)’;

F(4:15,7:8)=rand(12,2); F(11,5:11)=rand(1,7);

% CONVERSION TO B&W

Fbw=F>=0.1 % threshold 0.1

% DISTANCE TRANSFORM

Fdt=bwdist(Fbw)

% NORMALISATION

Fdt=(Fdt-min(Fdt(:)))/(max(Fdt(:))-min(Fdt(:)));

% CUT OF MATRIX F

Fcut=F(8:12,5:9), Fbwcut=Fbw(8:12,5:9), Fdtcut=Fdt(8:12,5:9)

FIGURE 4.2. Matlab code for distance transform.

When the DT finished, we can approach the watershed transform. In case that the objects
to be identified are white, we have to obtain the complement image. Consequently, white pixels
become black, in geographical interpretation, mountains in the original binary image become
catchment basins. The computation process composes of the following steps. We compute firstly
the DT, secondly the negative of the DT, and finally the watershed transform to produce
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the label matrix. In this matrix, positive integers represent catchment basins and zeros symbolise
the watershed ridges. When superimposed on the original image, we can display the segmented
image. This technique is displayed in the top raw of Fig. 4.8.

Sometimes, objects can be split incorrectly, which is called oversegmentation. This phenomenon
takes place in Fig. 4.8e. A couple of methods of overcoming oversegmentation are discussed
below.

4.3 Gradients

Computation of the gradient magnitude [9] is one of the techniques for grey-scale images pre-
processing prior to watershed segmentation. This technique aims to reduce oversegmentation.

In gradient magnitude images, pixels along the object edges are of high values, and other pixels
are of low values. To achieve a good segmentation performance, the gradient image needs to be
smoothed by filling gaps between objects and smoothing their outer edges.

One of the ways to compute gradient magnitude is linear filtering. We can employ, for instance,
the Sobel edge-emphasising filter, which is either horizontal h or vertical h′. This filter uses
a smoothing effect by approximating either the vertical or the horizontal gradient in an image,
respectively.

h =

⎡
⎢⎣

1 2 1
0 0 0
−1 −2 −1

⎤
⎥⎦ h′ =

⎡
⎢⎣

1 0 −1
2 0 −2
1 0 −1

⎤
⎥⎦

 (a) ORIGINAL IMAGE  (b) VERTICAL EDGES

 (c) HORIZONTAL EDGES  (d) GRADIENT IMAGE

FIGURE 4.3. Gradient magnitude computed by convolution with Sobel filters.

Fig. 4.3b,c displays the results Ih and Iv of the convolution of the original image and the edge
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% GRADIENT MAGNITUDE IMAGES

% HORIZONTAL AND VERTICAL SOBEL FILTERS

hh=fspecial(’sobel’) hv=fspecial(’sobel’)’

% LOAD IMAGE

A=load(’SimImage.mat’); C=struct2cell(A); I=C{1};

% GRADIENTS

Ih=imfilter(I,hh,’replicate’); % emphasise vertical edges

Iv=imfilter(I,hv,’replicate’); % emphasise horizontal edges

Ig=sqrt(Ih.^2+Iv.^2); % combined gradient image

FIGURE 4.4. Matlab code for gradient magnitude computation by convolution with Sobel filters.

emphasising filters h and h′, respectively. The resulting gradient image Ig is the combination

of the two images with emphasised edges given by Ig =
√
I2
h + I2

v . The programme code is
enclosed in Fig. 4.4.

Problems that might occur are oversegmentation (even after smoothing) and association of the catch-
ment basins with the objects. One of the methods of solving these problems is described
in the following section.

4.4 Marker-Controlled Watershed Segmentation

The watershed transform applied directly to gradient images can result in a severe overseg-
mentation. To eliminate oversegmentation, we need some additional knowledge to determine
the number of allowable regions. One of the methods using additional knowledge is marker-
controlled segmentation [9].

 (a) COMPLEMENT IMAGE  (b) REGIONAL MINIMA  (c) INTERNAL MARKERS

 (d) EXTERNAL MARKERS (e) MINIMA IMPOSITION  (f) WATERSHED SEGM.

FIGURE 4.5. Marker-controlled watershed segmentation.
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Markers are used for modifying gradient images. There are two types of markers, i.e. internal
and external markers. Internal markers are imposed inside the objects to be identified, external
markers are imposed outside the objects, i.e. in the background of an image. Markers can
be computed by various methods such as linear filtering, nonlinear filtering, or morphological
processing. The method choice is determined by the nature of the processed image. There is
a range of methods of much higher complexity that the one chosen in this work. These complex
techniques render more additional knowledge of the processed image.

Fig. 4.6 contains the programme code for marker-controlled watershed segmentation. The re-
mainder of this section is dedicated to its explanation.

% MARKER CONTROLLED SEGMENTATION

% COMPLEMENT IMAGE

A=load(’SimImage.mat’); % load original image

C=struct2cell(A); I=C{1}; N=size(I)

Ic=ones(N,N)-I; % complemental image (objects need to be the minima)

% INTERNAL MARKERS

rm=imregionalmin(Ic); % rm=binary image; regional minima location (ones)

im=imextendedmin(Ic,0.5); % extended minima transform, threshold=0.5

Iim=Ic; % internal markers (inside objects)

Iim(im)=175/256; % extended minima locations shown as grey regions

% EXTERNAL MARKERS

Lim=watershed(bwdist(im)); % watershed transform of the DT of the int. markers

em=Lim==0; % external markers: in the background- midway between the int. markers

% MINIMA IMPOSITION TECHNIQUE

Ic2=imimposemin(Ic,im|em); % -> reg. minima only in marked locations, other

% pixels pushed up; im|em is a mask marking the desired minima locations

% WATERSHED SEGMENTATION

L=watershed(Ic2); I2=L==0; % ridge lines

FIGURE 4.6. Matlab code for marker-controlled watershed segmentation.

As noted above, we endeavour to place internal markers inside each object of interest, that
means into regional minima of a gradient image. Regional minima are defined as connected
components of pixels with the same intensity value, whose pixels of external boundaries all
have a higher intensity value. To obtain regional minima, we can use the Matlab function
imregionalmin [11].

Images can be highly oversegmented, as a consequence of too many regional minima contained
in a given gradient image. The large number of the minima might be caused by noise or other
distortions, and can be destructive to segmentation. One of the methods of computing inter-
nal markers, which solves this problem, is the extended minima transform implemented by
imextendedmin function [11]. This transform extends the minima locations. The pixels falling
to these locations are of lower intensity than their immediate surrounding by an adjusted thresh-
old. Consequently, a large number of redundant minima is suppressed. As noted in the pro-
gramme in Fig. 4.6, we assign the same grey-color intensity value to all pixels in the extended
minima locations, and thus exhibit the internal markers.

To calculate external markers, we need to identify the background in the gradient image, i.e.
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to find pixels midway between the internal markers. Hence we compute the watershed transform
of the distance transform of the internal markers image. The resulting ridge lines are the external
markers.

As the next step, the gradient image is modified with the minima imposition procedure using
both internal and external markers, realised by the command imimposemin [11]. In the gradient
image, minima exist only in marked locations, other pixels’ intensity has been increased to sup-
press other regional minima. Finally, we implement the watershed transform to the modified
gradient image.

Fig. 4.5 displays the marker-controlled watershed segmentation applying the above described
techniques. The objects to be labeled by segmentation need to be black, i.e. the minima
of the image. Therefore, we work with the complement to the original grey-scale image. The re-
sult of segmentation is in the midway between internal and external markers. This image is not
of the kind, that requires marker-controlled segmentation. That is why the contour of the objets
is very rough. However, this is only a demonstration of the marker-controlled technique.

4.5 Impact of Noise on Watershed Segmentation

Noise can have a severe impact on image segmentation resulting in oversegmentation. Fig. 4.7
demonstrates addition of high-frequency noise. In this section, the additional noise is realised
by two-dimensional sinusoids running vertically and horizontally. This kind of noise enables us
to perform successful denoising using FIR filters and frequency windows. For noise of not such
a very constrained frequency spectrum, e.g. white noise, we need to employ other denoising
techniques, such as wavelet transform described in Chap. 3.

FIGURE 4.7. Adding noise to image.
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Fig. 4.8 points out the corruptive effect of noise on image segmentation. Fig. 4.9 shows the cor-
responding Matlab code for noise addition and the distance transform followed by the watershed
transform of the original and noisy image. In order to prevent oversegmentation, it is necessary
to reduce the amount of noise in an image. The following subsections demonstrate denoising
in the frequency and space domain, and the consequent improvement in segmentation results.

 (a) ORIGINAL IMAGE
 

 (b) ORIGINAL IMAGE:
DISTANCE TRANSF.

 (c) ORIGINAL IMAGE:
WATERSHED TRANSF.

 (d) NOISY IMAGE
 

 (e) NOISY IMAGE:
DISTANCE TRANSF.

 (f) NOISY IMAGE:
WATERSHED TRANSF.

FIGURE 4.8. Destructive impact of noise on watershed segmentation causing oversegmentation.
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% IMPACT OF NOISE ON WATERSHED SEGMENTATION

A=load(’SimImage.mat’); C=struct2cell(A); IM=C{1}; % load original image

bw=im2bw(IM,graythresh(IM)); % image conversion to binary

bwc=~bw; % complement to binary

% DISTANCE TRANSFORM

D=bwdist(bwc); D1=(D-min(D(:)))/(max(D(:))-min(D(:))); % normalisation

% WATERSHED TRANSFORM

D=-D; % D is negative distance transform (complement to D)

D(bwc)=-Inf; % each zero pixel in matrix D = -Inf

LL=watershed(D); % LL is a label matrix

w=LL==0; % boundary display: assigning ones to zeros in LL, other pixels=0

[L,num(1)]=bwlabel(bw); % label image, num = no of connected objects

[N,N]=size(IM);

for i=1:N % noise

n=[0:N-1]’; a(i,:)=[sin(2*pi*0.3*n)]’; b(:,i)=[sin(2*pi*0.4*n)];

end

x=a+b; x=(x-min(m x)))/(max(max(x))-min(min(x))); % normalisation

IMnoisy=IM+x; % noise addition

IMnoisy=(IMnoisy-min(min(IMnoisy)))/(max(max(IMnoisy))-min(min(IMnoisy)));

bw2=im2bw(IMnoisy,graythresh(IMnoisy)); % conversion to binary

bwc=~bw2; % complement to binary

% DISTANCE TRANSFORM

D=bwdist(bwc); D2=(D-min(D(:)))/(max(D(:))-min(D(:)));

% WATERSHED TRANSFORM

D=-D; D(bwc)=-Inf; LL2=watershed(D); w2=LL2==0;

[L2,num(2)]=bwlabel(bw2); % label image

FIGURE 4.9. Matlab code for marker-controlled watershed segmentation.
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4.5.1 Denoising in Frequency Domain

To prevent oversegmentation, additional noise has to be removed before segmentation takes
place. Frequency windowing described in detail in Subsec. 2.2.5 is shown in Fig. 4.10.

FIGURE 4.10. Image denoising using frequency windowing.

Thanks to denoising, we achieve a very good segmentation result as apparent from Fig. 4.11
comparing the noisy and clean image segmentation.

 (a) NOISY IMAGE
 

 (b) NOISY IMAGE:
DISTANCE TRANSF.

 (c) NOISY IMAGE:
WATERSHED TRANSF.

 (d) CLEAN IMAGE
 

 (e) CLEAN IMAGE:
DISTANCE TRANSF.

 (f) CLEAN IMAGE:
WATERSHED TRANSF.

FIGURE 4.11. Effect of denoising using frequency window on watershed segmentation.
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4.5.2 Denoising in Space Domain

Additional noise can also to be removed from images by filtering in the space domain. Fig. 4.12
pictures frequency characteristics of the two-dimensional FIR filters of order 5 and 15 designed
on the same basis as in Subsec. 2.1.3.

FIGURE 4.12. 2D FIR filters design.

Fig. 4.13 displays the improvement in segmentation after denoising using these two FIR fil-
ters. Same as above, watershed segmentation is preceded by the distance transform. In case
of denoising with the filter of order 5, some oversegmentation is still apparent.

 (a) NOISY IMAGE
 

 (b) CLEAN IMAGE
FILTER ORDER 5

 (c) CLEAN IMAGE
FILTER ORDER 15

 (d) NOISY IMAGE:
WATERSHED TRANSF.

 (e) CLEAN IMAGE (F.O.5):
WATERSHED TRANSF.

 (e) CLEAN IMAGE (F.O.15):
WATERSHED TRANSF.

FIGURE 4.13. Effect of denoising using two FIR filters of different orders on watershed segmentation.
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4.5.3 Comparison of Denoising Methods

This subsection brings the comparison of the denoising approaches dealt with in the two previ-
ous subsections, i.e. frequency windowing and space-domain filtering using the FIR filter of or-
der 5 and 15. To evaluate the amount of noise in the image, we calculate the signal to noise
ratio SNR in Decibels given as

SNR = 10 log10

⎛
⎜⎜⎜⎜⎜⎝

M∑
i=1

N∑
j=1

I(i, j)2

M∑
i=1

N∑
j=1

(I(i, j) − In(i, j))
2

⎞
⎟⎟⎟⎟⎟⎠ (4.1)

where I is the reference original image of size M×N , In is the noisy image, and i, j are the raw
and column indexes, respectively. Tab. 4.1 lists the denoising methods according to the increas-
ing SNR values. Two of these methods have achieved the same number of segments as that
for the original image.

TABLE 4.1. Comparison of denoising methods according to segmentation results.

Denoising Method SNR [dB] No of Segments
None 28.48 1378
FIR 5 32.40 23

Freq. Window 33.78 9
FIR 15 34.00 9

Original Image 196.59 9

.
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5

Feature Based Image Segmentation

5.1 Principles of Feature Based Image Segmentation (FBIS)

As already mentioned, image segmentation is widely employed in image processing specifying
boundaries between regions or objects of interest. Feature-based image segmentation (FBIS) is
a segmentation technique engaging visual content descriptors of images called visual features.
Visual features include colour, texture, shape, and spatial information. Features should be ideally
invariant to the conditions of the imaging process, e.g. illumination of the scene, viewing angle
etc. However, the greater is the invariance quality, the poorer is the discrimination ability.

The descriptors are either global (for whole images) or local (for objects or regions in images).
To obtain a finer resolution for global features, we can apply the partition method, which cuts
an image into parts of the same size and shape. Each of the parts is represented by global
features. Local features are computed for objects or regions resulting from image segmentation.

Colour Features

An advantage of colour features is their point-like nature, which makes them independent
on image size and rotation. Before approaching colour features, we need choose colour space.
Colour space should be perceptually uniform, which means that the Euclidian distance between
two colour triples equals the difference between the two colours perceived by the human eye [10].

The RGB space developed upon the colour receptors in the eye [10] is probably the most
popular space for image display. This space comprises of the red, green, and blue component,
whose values are added together to form each pixel value. We therefore call this space additive.
The CMY space [1] used for printing comprises of cyan, magenta and yellow component. This
space is subtractive. Both the RGB and CMY space are device-dependent and perceptually
non-uniform. However, they are convertible into the following colour spaces.

The L*a*b* and L*u*v* [10] space are device-independent and uniform. L is a luminance (or
lightness) component and a, b or u, v are chromatic components. L*a*b* is colour subtrac-
tive, whereas L*u*v* is colour additive. Both can be obtained from a non-linear transform
of the RGB space. They are derived from human perception models, and hence most appropri-
ate for image segmentation and retrieval.

Another non-linear colour space is HSV [1] used in computer graphics. HSV stands for hue,
saturation and value (brightness). The hue is invariant to illumination and viewing angle, and
therefore is also convenient for image segmentation and retrieval.

The opponent colour space [1] has the colour axes given as (R-G, 2B-R-G, R+G+B). The first
two axes represent chromacity (colour) and do not vary with the changes of illumination.
The third axis isolates the brightness component. Human perception is more sensitive to bright-
ness than to colour, and hence the chromacity data can be down-sampled.

The first type of colour features dealt with hereby are colour moments reflecting colour distri-
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butions in images. They are used especially for images containing solely the object. The first
order moment is called mean, the second is variance, and the third is skewness [1]

μi =
1

N

N∑
j=1

fij (5.1)

σi = (
1

N

N∑
j=1

(fij − μi)
2)

1
2 (5.2)

si = (
1

N

N∑
j=1

(fij − μi)
3)

1
3 (5.3)

where fij is the value of the i-th colour component of the pixel j and N is the total number
of pixel in an image. The skewness is additional to the first two moments, since it can sometimes
be sensitive to scene conditions. We have got three moments for three colour components, what
gives nine features characterising the colour content of an image. These features are easily
computable, and thus may be evaluated prior to more complex colour descriptors.

Another easily computable colour representation is the colour histogram [1] used either as
a global or local descriptor invariant to translation, rotation about the view axis, and just
slightly dependent on the scale, occlusion and viewing angle. For each colour space component,
histogram shows the distribution of pixels among quantised bins. With the increasing number
of bins, the discrimination ability grows, but on the other hand, the computation cost increases.
Furthermore the large number of bins makes histogram unsuitable for creating effective database
indexes. This problem can be solved by taking into account only a certain number of the largest
bins. The small ones are highly impacted by noise anyway.

Matlab provides us with the command hist [11] to plot the histogram of a given image as shown
in Fig. 5.1 for the grey-scale MR image of the spine.

(a) MR IMAGE

0 0.2 0.4 0.6 0.8 1
0

50

100

150

200
(b) COLOUR HISTOGRAM

FIGURE 5.1. Colour histogram of MR image.

For very large databases, histogram-based description can result in too many matches. This high
number of matches can be reduced by some additional information. Histogram itself provides
no spatial information of pixels. We can introduce this information into this representation by
simple image partition or image segmentation, but this requires more memory and computation
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time. One method of introducing spacial information into the histogram is the colour coherence
vector (CCV) [1]. Each histogram bin is divided into two parts, i.e. coherent and incoherent.
The former represents large uniformly coloured regions. For the both descriptors, i.e. the CCV
and histogram, HSV colour space is more suitable than L*a*b* or L*u*v*.

Colour Correlogram or autocorrelogram [1] has better results than the previous two. It combines
colour distribution of pixels with spatial correlation of pairs of colours or identical colour in case
of autocorrelogram.

Texture Features

Texture is a local pattern of intensity variation in an image produced by various nature of imaged
objects’s surface [3]. Texture cannot be described by means of colour or mean intensity. In some
cases, it is solely texture features, which can distinguish between neighbouring objects displayed
in an image. A good texture feature should be translation invariant as much as possible, since
texture is unaffected by shifting the identified object [10].

Texture features are utilised in such disciplines as pattern recognition or computer vision.
Methods of patern description are either structural or statistical [1]. The former, such as mor-
phological operator and adjacency graph, work with structural primitives and their placement
rules, and thus perform well for very regular textures. The latter, such as Fourier power spectra,
and multiresolution filtering using the wavelet transform (WT), describe statistical distribu-
tion of the image intensity. The WT as an instrument of pattern characteristics is probably
the most commonly used technique in CBIR [10]. Dependencies of the WT coefficients are usu-
ally statistically modelled employing multiresolution frameworks such as Markovian statistical
models [10]. See Sec. 3.3 for more information.

Spatial Features

Spatial features characterise the layout of the objects or regions in an image, and thus prior
segmentation is required. These features may be simple measures such as object size and its
centre of gravity. Spatial characteristics should be invariant to translation, rotation and scaling.

They are either region-based, such as statistical moments, or boundary-based, such as rectilinear
shapes, polygonal approximation, and Fourier-based shape descriptors [1]. Fourier descriptors
are computed from the pixels of the regions’ or objects’s boundaries.

5.2 Results for Simulated Images

Throughout this section, we process the simulated image composed of four regions of different
texture shown in Fig. 5.2 and produced by the source programme code displayed in Fig. 5.3.
Using FBIS, we endeavour to classify pixels of the image into the four corresponding categories.

For segmentation, three feature extraction techniques are employed. The first of them is the summed
squared db2 diagonal detail coefficients (see Fig. 2.21) of the highest DWT decomposition level.
The second one is intensity histogram and the last one is the standard deviation.

For each pixel, we calculate one feature from a selected square neighbourhood of the pixel.
The current pixel is called the root pixel, since it lies in the middle of the square neighbour-
hood. Computation is carried out by the Matlab function nlfilter [11]. This function applies
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(a) SIMULATED IMAGE (b) PIXELS’ CLASSES

1 2

3 4

FIGURE 5.2. Simulated image and its pixels’s classes visualisation.

% FUNCTION ’SIMULATE IMAGE’

function A=SimImage()

A=zeros(256);R=11;

% CLASS 2

f1=0.25; f2=0.25; N=128; M=128; r1=1; c1=128;

B=class(N,M,f1,f2)*0.3; A(r1:r1+N-1,c1:c1+M-1)=B;

% CLASS 3

f1=0.3; f2=0.3; r1=128; c1=1;

B=class(N,M,f1,f2)*0.6; A(r1:r1+N-1,c1:c1+M-1)=B;

% CLASS 4

f1=0.4; f2=0.4; r1=128; c1=128;

B=class(N,M,f1,f2); A(r1:r1+N-1,c1:c1+M-1)=B;

% FUNCTION ’GENERATE TEXTURE’

function B=class(N,M,f1,f2)

B=sin(2*pi*f1*[1:N]’)*sin(2*pi*f2*[1:M]);

% B=B+0.5*randn(N,M); % noise addition

B=(B-min(B(:)))/(max(B(:))-min(B(:)))/2+0.5;

FIGURE 5.3. Matlab code for simulated image generation.

one of the above techniques to each square sliding block. It zero-pads the block at the edges, if
necessary. The source code for FBIS into our levels is enclosed in Fig. 5.5.

Fig. 5.4 pictures the segmentation results. Obviously, the DWT method of features computation
performs best. To evaluate the success of each method, we compute the percentage p of correctly
classified pixels given by

p =
correct

total
100% (5.4)

where correct is the number of correctly classified pixels in the area and total is the total number
of pixels in the area. The algorithm for p evaluation is also contained in the code in Fig. 5.5.
Tab. 5.1 displays results for each feature extraction technique for a chosen area (1, 2, 3 or 4)
and for the whole image.
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(a) ORIGINAL IMAGE (b) FBIS: DWT FEATURES

(c) FBIS: INTENSITY FEATURES (d) FBIS: STD FEATURES

FIGURE 5.4. FBIS of simulated image using DWT features, intensity features, and standard deviation
features.

TABLE 5.1. Comparison of FBIS methods according to percentage of correctly clas-
sified pixels in original simulated image.

FBIS Methods → DWT Coefficients Intensity Standard Deviation
class 1 93.85 % 100.00 % 93.85 %
class 2 97.49 % 93.11 % 90.10 %
class 3 97.30 % 84.20 % 90.10 %
class 4 99.06 % 89.89 % 100.00 %

total 96.92 % 91.80 % 93.51 %
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% FEATURE BASED IMAGE SEGMENTATION
R=SimImageF; Region=[7 7]; % load image; 7x7 region for feature extraction

% FEATURES EXTRACTION
% nlfilter: perform general sliding-neighborhood operations
F1=nlfilter(R,Region,’feature1e’); F1=classify(F1); % DWT coefficients features
F3=nlfilter(R,Region,’feature3’); % intensity features
F4=nlfilter(R,Region,’feature4’); % standard deviation features

% PERCENTAGE OF CORRECT PIXELS CLASSIFICATION
[M,N]=size(R); val=[0.25 0.5 0.75 1]; % pixels’ values in classified images
image_total=M*N; % total no of pixels in the image
class_total=M/2*N/2; % total no of pixels belonging to aech single class
r=[0 0 M/2 M/2]; c=[0 N/2 0 N/2]; % raw and column index
FF={F1 F3 F4};
for j=1:3, for i=1:4 % classes individually

FF1=FF{j}(1+r(i):M/2+r(i),1+c(i):N/2+c(i)); FF1=FF1==val(i);
k(j,i)=sum(FF1(:)); % no of correctly classified pixels in each class
Fclass(j,i)=k(j,i)/class_total*100; end % [%]

end
Ftotal=sum(k’)/image_total*100 % [%], whole image

% FUNCTION ’COMPUTE DWT FEATURES’
function s=feature1e(B)

[cA,cH,cV,cD] = dwt2(B,’db2’); % DWT: ’db2’, single level decomp.
s=sum(sum(cD.^2));

% FUNCTION ’CLASSIFY DWT FEATURES’
function C=classify(B)

v=[0 0.00001 0.05 0.45] % for SimImage (Region=[7 7]), ’db2’
%v=[0 0.00005 0.013 0.07] % for noisy SimImage (Region=[7 7]), ’db2’
%v=[0 0.000000023 0.00016 0.015] % or clean SimImage, THR/2
%v=[0 0.001 0.0025 0.0035] % for MRpater004 (Region=[5 5]); ’db2’
N=length(v); C=zeros(size(B));
for i=1:N-1, A=B>=v(i) & B<v(i+1); A=A*i/N; C=C+A; end
A=B>=v(N); C=C+A;

% FUNCTION ’COMPUTE INTENSITY FEATURES’
function s=feature3(B)

N=4; s=0; v=[0:1/N:1]*0.8; % intensity boundaries
[MH,x1]=hist(B(:),N); rc=mean(x1(MH==max(MH)));
for i=1:N-1, if rc>=v(i) & rc<v(i+1), s=i/N; end, end
if rc>=v(N), s=1; end

% FUNCTION ’COMPUTE STANDARD DEVIATION FEATURES’
function s=feature4(B)

N=4; F1=std(B(:)); % standard deviation
v=[0 0.01 0.05 0.098]; % std boundaries for SimImage (Region=[7 7])
%v=[0 0.01 0.03 0.05]; % std boundaries for noisy image SimImage
%v=[0 0.0008 0.007 0.025]; % std boundaries for denoised SimImage, THR/2
%v=[0 0.05 0.1 0.15]; % std boundaries, for MR image (Region=[5 5])
if F1>=v(N), s=1; end, for i=1:N-1, if F1>=v(i) & F1<v(i+1), s=i/N; end, end

FIGURE 5.5. Matlab code for FBIS of simulated image using DWT features, intensity features, and
standard deviation features.
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5.2.1 Impact of Noise on FBIS

This section focuses on the impact of white noise added to the simulated image. Noise addition is
noted as a commentary in the Matlab code displayed in Fig. 5.3. The segmentation procedure is
analogical to that described in the previous section. The only difference are the newly adjusted
values of the boundaries between the classification bins for the DWT and standard deviation
features. These new values are displayed as a commentary in Fig. 5.5.

(a) NOISY IMAGE (b) FBIS: DWT FEATURES

(c) FBIS: INTENSITY FEATURES (d) FBIS: STD FEATURES

FIGURE 5.6. FBIS of noisy simulated image using DWT features, intensity features, and standard
deviation features.

Fig. 5.6 and Tab. 5.2 demonstrate the segmentation outcome for the noisy image. For the DWT
and standard deviation methods, the percentage of successful classification decreases as ex-
pected. However, it surprisingly increases for intensity histogram.

TABLE 5.2. Comparison of FBIS methods according to percentage of correctly clas-
sified pixels in noisy simulated image.

FBIS Methods → DWT Coefficients Intensity Standard Deviation
class 1 93.85 % 98.63 % 93.85 %
class 2 96.84 % 98.59 % 90.10 %
class 3 90.04 % 98.65 % 87.63 %
class 4 93.28 % 98.27 % 98.20 %

total 93.50 % 98.54 % 92.44 %
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5.2.2 Effect of Denoising on FBIS

For denoising of the simulated image, we use the programme displayed in Fig. 3.7. As shown
in Fig.5.7, the db2 detail coefficients up to the second level are thresholded with the soft global
threshold of half the value of the estimate given by Eq. (3.3).
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FIGURE 5.7. Denoising of noisy simulated image using db2 wavelet decomposition to level 2 and
thresholding.

Fig. 5.8 and Tab. 5.3 display the effect of denoising on image segmentation. The percentage
of correctly classified pixels for the DWT method increases in keeping with our expectations.
For the standard deviation, the percentage decreases since the boundaries dividing the different
pattern areas are now wider due to the denoising process. Intensity features behave slightly
oddly, same as in the previous section.

TABLE 5.3. Comparison of FBIS methods according to percentage of correctly clas-
sified pixels in denoised simulated image.

FBIS Methods → DWT Coefficients Intensity Standard Deviation

class 1 88.12 % 97.86 % 83.48 %
class 2 94.88 % 98.14 % 84.23 %
class 3 95.75 % 98.91 % 87.56 %
class 4 97.83 % 98.39 % 99.04 %
total 94.14 % 98.32 % 88.58 %
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(a) DENOISED IMAGE (b) FBIS: DWT FEATURES

(c) FBIS: INTENSITY FEATURES (d) FBIS: STD FEATURES

FIGURE 5.8. FBIS of denoised simulated image using DWT features, intensity features, and standard
deviation features.
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5.3 Results for Magnetic Resonance (MR) Images

Fig. 5.9 pictures a real MR image segmented using the three feature extraction methods dis-
cussed above. Different from the simulated image, the neighbourhood region is reduced to 5×5
pixels.

(a) ORIGINAL MR IMAGE (b) FBIS: DWT FEATURES

(c) FBIS: INTENSITY FEATURES (d) FBIS: STD FEATURES

FIGURE 5.9. FBIS of MR image using DWT features, intensity features, and standard deviation
features.

To evaluate the percentage of successfully classified pixels, we need consult a specialist. There-
fore, we leave Fig. 5.9 only to visual examination. Apparently, the DWT method does not
perform very well. For further research, a more appropriate wavelet may be by sought. .
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Conclusions

This thesis is dedicated to problems of image segmentation as an important preliminary pro-
cedure of image processing. Two segmentation tools, i.e. the watershed transform and feature-
based image segmentation (FBIS), are introduced and applied on both simulated and real
biomedical images.

The former requires image preprocessing in order to avoid oversegmentation. Therefore, the wa-
tershed segmentation is used in conjunction with the distance transform, gradient magnitude,
and marker-control methods also described and demonstrated hereby.

The latter technique exploits visual features capturing the desired information in images to dis-
tinguish the objects or regions of interest. We focus mainly on texture features obtained from
the Daubeschies of order 2 wavelet decomposition coefficients. These descriptors perform very
well for simulated images. However, their application to magnetic resonance (MR) images is
not very successful. On the other hand, these results might be improved with the use of another
wavelet function.

FBIS is the most frequently used segmentation tool in content-based image retrieval (CBIR).
A brief outline of how the CBIR systems work is provided.

A considerable part of this work deals with the negative impact of noise on image segmentation
and the improving effect of image denoising. For noise removal, we use, firstly, frequency win-
dowing employing the Fourier spectra, secondly, space filtering utilising finite impulse response
(FIR) filters, and lastly, thresholding of the wavelet decomposition coefficients. The choise
of the denoising method depends on the nature of the noise and signal.

In future, I will study various wavelet decomposition methods applied both to texture con-
tent extraction and image denoising. Denoising employs chosen techniques of thresholding
of the wavelet coefficients. Another part of my future work will be focused on the possitive
effect of denoising on FBIS utilising particularly texture features.

Texture-based segmentation of MR images enables us to create three-dimensional models of clas-
sified body tissues. The segmentation results will be discussed with a specialist to find out
whether they are semantically meaningful and facilitate medical diagnosing. For this practical
application, a well-arranged graphical user interface (GUI) will be designed.

The results of my work will be placed on Matlab Web Server for remote data processing adminis-
trated by the Department of Computing and Control Engineering at the Institute of Chemical
Technology (ICT) in Prague. This server provides free download of executable files created
in Matlab and running independently on Matlab platform.
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