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Abstract

In the present paper we will deal with numerical solution of a generalized semi-
coercive contact problem in linear elasticity, for the case that several bodies of
arbitrary shapes are in mutual contacts and are loaded by external forces, by
using the non-overlapping domain decomposition and finite elements method.
The numerical example will be presented.

1 Introduction

In mechanics as well as technological practice there are problems whose investigations lead to
solving model problems based on variational formulations. Such problems are described fre-
quently by variational inequalities. Variational inequalities physically describe the principle of
virtual work in its inequality form. The numerical solution is based on the theory of contact
problem in elasticity and the finite element approximation. The algorithm used for our computa-
tion is based on the nonoverlapping domain decomposition method. For an extensive problems
it is appropriate to use programming language as FORTRAN or C++. System MATLAB play an
important role in testing, debugging and last but not least in vizualization.

2 The model

We consider a system of elasic bodies decomposed into subdomains each of which occupies, in
reference configuration, a domain Ωn in R2, n = 1, . . . , N , with sufficiently smooth boundary
∂Ωn. Suppose that boundary

⋃N
n=1 ∂Ωn consists of disjoint parts Γu, Γo, Γτ , Γc and Γ. By Γu we

denote the part of boundary on that displacements are prescribed. The part Γc denotes the part
of boundary that may get into unilateral contact with some other subdomain, the part Γo denote
the part of boundary on that is prescribed the condition of the bilateral contact, the part Γτ

denotes the loaded part of boundary and the part Γ denotes inner interface between subdomains.
We suppose that Γ ∩ Γτ = ∅. Let body forces F, surface traction P and displacements u0 be
given (see Fig. 1).

We shall look for the displacement that satisfy the conditions of equilibrium in the set
K = {v ∈ V | vkn + vln ≤ 0 on Γc} of all kinematically admissible displacement v ∈ V , V =
{v ∈ H1(Ω)| v = u0 on Γu, vn = 0 on Γo}, H1(Ω) = [H1(Ω1)]2 × · · · × [H1(ΩN )]2 is standard
Sobolev space. The displacement u ∈ K of the system of bodies in equilibrium then minimizes
the energy functional L(v) = 1

2a(v,v)− L(v):

L(u) ≤ L(v) for any v ∈ K, (1)

where

a(u,v) =
N∑

n=1

∫

Ωn

cn
ijkleij (un) ekl (vn) dx, (2)

L(v) =
N∑

n=1

∫

Ωn

Fn
i dx +

N∑

n=1

∫

Γτ∩∂Ωn

Pn
i vn

i ds. (3)



3 Domain decomposition algorithm

Let us introduce
T = {n ∈ {1, . . . , N} : Γ̄c ∩ ∂Ω̄n = ∅}

the set of all indices of subdomains Ωn which are not adjacent to a contact, and

ϑ = {[k, l], k, l ∈ {1, . . . , N} : ∂Ω̄k ∩ ∂Ω̄l ⊂ Γc}

represents couples of subdomains in unilateral contact. Suppose that Γ ∩ Γc = ∅. Then for the
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Figure 1: The contact problem with decomposition

trace operator γ : [H1(Ωn)]2 → [L2(∂Ωn)]2 we have

VΓ = γK|Γ = γV |Γ. (4)

Let γ−1 : VΓ ∈ V be an arbitrary linear inverse mapping satisfying

γ−1v = 0 on Γc ∀v ∈ VΓ. (5)

Let us introduce restrictions Rn : VΓ → Γn; Ln : L → Ωn; an(., .) : a(., .) → Ωn; V (Ωn) : V → Ωn

and let
V 0(Ωn) = {v ∈ V | v = 0 on (∪N

n=1Ωn)\Ωn}
be the space of functions with zero traces on Γn where Γn = Γ∩ ∂Ωn The algorithm is based on
the next theorem and on the use of local and global Schur complements.

Theorem: A function u is a solution of a global problem (1), if and only if its trace u = γu|Γ
on the interface Γ satisfies the condition

N∑

i=1

[ai(ui(u), γ−1w)− Li(γ−1w)] = 0, ∀w ∈ VΓ,u ∈ VΓ (6)

and its restrictions ui(u) ≡ u|Ωi satisfy:

(i) the condition

ai(ui(u), ϕi) = Li(ϕi), ∀ϕi ∈ V 0(Ωi), for i ∈ T, (7)

(ii) the condition

ak(uk(u), ϕk) + al(ul(u), ϕl) ≥ Lk(ϕk) + Ll(ϕl), ∀ϕi ∈ V 0(Ωi), i = k, l, for [k, l] ∈ ϑ. (8)



Proof. See [4].

To analyze the condition (6) the local and global Schur complements are introduced.
Let

Vi = {γv|Γi
| v ∈ K} = {γv|Γi

| v ∈ V }
and define a particular case of the restriction of the inverse mapping γ−1(.)|Ωi by

{
Tr−1

i : Vi → V (Ωi), γ(Tr−1
i u)|Γi = ui, i = 1, . . . , N,

ai(Tr−1
i ui,vi) = 0, ∀vi ∈ V 0(Ωi), T r−1

i ui ∈ V (Ωi), for i ∈ T.
(9)

For [k, l] ∈ ϑ we complete the definition by the boundary condition (5), i.e.

Tr−1
k uk + Tr−1

l ul = 0 on Γc. (10)

The local Schur complement for i ∈ T is the operator Si : Vi → (Vi)∗ defined by

〈Siui,vi〉 = ai(Tr−1
i ui, T r−1

i vi) ∀ui,vi ∈ Vi. (11)

For subdomains which are in contact we define a common local Schur complement for the
union Ωk ∪ Ωl (where [k, l] ∈ ϑ) as the operator Sk,l : (Vk × Vl) → (Vk × Vl)∗ = (Vk)∗ × (Vl)∗

defined by

〈Sk,l(yk,yl), (vk,vl)〉 = ak(uk(yk), T r−1
k vk) + al(ul(yl), T r−1

l vl) ∀(vk,vl) ∈ Vk × Vl, (12)

where Tr−1
k and Tr−1

l are defined by means of (9) and (10).

The condition (6) can be expressed by means of local Schur complements in the form

∑

i∈T

〈Siui,vi〉+
∑

[k,l]∈ϑ

〈Sk,l(uk,ul), (vk,vl)〉 =
N∑

i=1

Li(Tr−1
i vi) ∀v ∈ VΓ, (13)

where u = γu|Γ , vi = Riv, ui = Riu. Then we will solve the equation (13) on the interface Γ
in the dual space (VΓ)∗. We rewrite (13) into the following form

S0U + SCONU = F , (14)

where

S0 =
∑
i∈T

(Ri)TSiRi,

SCON =
∑

[k,l]∈ϑ

R
T
k,lSk,lRk,l,

F =
N∑

i=1
(Ri)T (Tr−1

i )T Li

(15)

and Rk,l(u) = (Rk(u), Rl(u))T ,u ∈ VΓ.

Equation (14) will be solved by successive approximations, because the operators Sk,l

and therefore SCON are nonlinear. As a initial approximation U0 we choose the solution of the
global primal problem, where the boundary conditions on Γc are replaced by the linear bilateral
conditions

ukn − uln = 0, on Γc. (16)

Then we replace the set K by K0 = {v ∈ V | vkn − vln = 0 on Γc} and therefore, we solve the
following problem

u0 = arg minv∈K0 L(v), (17)



where L(v) = 1
2a(v,v)−L(v) and we set U0 = γu0|Γ. The auxiliary problem (17) represents a

linear elliptic boundary value problem with bilateral contact and it can be solved by the domain
decomposition method again.

The non-linear equation (14) will be solved by successive approximations. We will assume
that the approximation Uk−1 is known and the next approximation Ukwe find as the solution
of the following linear problem

S0U
k = F − SCONUk−1

, k = 1, 2, . . . (18)

In [4] the convergence of the method of successive approximation (18) to the solution of
the original problem (14) in the space (VΓ)∗ is proved.

Numerically (17) and (18) are solved by the finite element method. Let Vh, K0
h = Vh ∩K0

be finite element approximations of the sets of virtual and admissible displacements. The finite
element approximation of (17) leads to solve the following problem: find a function uh ∈ Kh,
such that

a(uh,vh − uh) = L(vh − uh) ∀vh ∈ K0
h. (19)

4 Numerical results

The practical behavior of presented algorithm is illustrated on geomechanical model problem
describing loaded granite block with cracs. A geometry of the problem is in Fig. 2.
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Figure 2: A geometry of the geomechanical problem

Material parameters: Young’s modulus E = 5.2× 109[Pa] and Poisson’s ratio ν = 0, 18.

Boundary conditions: Prescribed zero displacement on 1-2. Pressure 0, 6 × 107[Pa] on 2-8 and
3-5 and pressure 0, 3×107[Pa] on 3-4. Zero pressure on 1-5 and 4-8. Unilateral contact boundary
on 5-6 and 7-8. The dash lines represent the inner interface Γ.

Discretization statistics: 8 subdomains, 3888 nodes, 4800 elements, 48 unilateral contact condi-
tions, 519 interface elements.

Figs. 3, 4 and 5 show the deformations (enlarge factor is 50) and the horizontal and the
vertical components of displacement. Figs. 6, 7 and 8 represent the horizontal component τx,
the vertical component τy and the shear component τxy of stress tensor. Fig. 9 demonstrates
principal stresses in granite block. On this figure symbol ←→ denotes extension and symbol
→← denotes compression. For figures generating, I exploited pdetool - the partial differential
equation toolbox (for example function pdeplot).
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Figure 3: The deformations (enlarge factor is 50)
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Figure 4: The horizontal component of displacement
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Figure 5: The vertical component of displacement



−1.5

−1

−0.5

0

0.5

1

x 10
7

0 5 10 15 20 25 30 35 40 45 50
0

5

10

15

20

25

τ
x

Figure 6: The horizontal component of stress tensor
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Figure 7: The vertical component of stress tensor
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Figure 8: The shear stresses
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Figure 9: The principal stresses
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[2] J. Daněk. Using MATLAB for solving contact problem in elasticity. MATLAB’2003, pro-
ceedings of the conference, part I., 94 - 99, Humusoft, Prague, 2003.
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