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Abstract

Binary image of individual n-dimensional object is an information source for ob-
ject recognition. The properties extracted from given binary image should be
invariant to translation (T), scaling (S), and rotation (R) of the original pattern,
object, or image, respectively. There are many possibilities how to realize TSR
invariant properties of n-dimensional binary images. The translation invariance
can be achieved by using n-dimensional Fourier transform and amplitude spec-
trum, which is trivial. The rotation of original will cause rotation of Fourier
spectrum. Thus the rotation invariance is based on envelopes, which are gener-
ated by rotation of Fourier spectrum. The resulting envelopes can be rescaled to
normalized forms which are TSR invariant. The recognition system uses TSR in-
variant envelopes as non-linear preprocessing for proposed variation recognizer.
Standard PCA technique is used as referential method. All the programs are
realized in Matlab environment.

1 Introduction

The translation of object in Rn must not complicate the functionality of any recognition system,
which is called translation invariant. Similar objects of various size are often supposed to be
identic, which motivates the scaling invariance. The special applications require the rotation
invariance of recognition system. Grain particle recognition, categorization, and counting are
typical TSR invariant tasks, while the character recognition must not be rotation invariant due
to pairs: WM, 25, 69, E3.

2 Preliminaries

Real objects are studied through their 1D, 2D or 3D images. They can be transformed to
gray form, proceeded, filtered, denoised, or enhanced and then converted to binary form by
segmentation or thresholding. The definitions of basic image terms are necessary.

• Let n ∈ N be image dimension, N ∈ N be hypercube size.

• Image volume: V(f) =
∫
Rn

f(x) dx.

• Hypercube, discrete hypercube: Cn,N = [0;N ]n,Kn,N = {0; . . . ;N − 1}n.

• Sets of non-zero finite gray and binary images: G∗n,N ,B∗n,N .

• Sets of non-zero discrete gray and binary images: G+
n,N ,B

+
n,N .

• Let Wn = {f : Rn → C,
∫
Rn
|f(x)| dx < +∞}, Dn,N = {f : Kn,N → C \ {∞}}.

Then B∗n,N ⊂ G∗n,N ⊂Wn and B+
n,N ⊂ G+

n,N ⊂ Dn,N .

• Fourier transform is then defined as Fn : Wn →Wn satisfying

Fn{f(x)} = Fn(ω) =
∫

Rn
f(x)e−i ω

′ x dx. (1)



• Discrete Fourier transform is defined as Dn,N : Dn,N → Dn,N satisfying

Dn,N{f(x)} = Fn,N (ω) =
N−1∑

x1=0

· · ·
N−1∑

xn=0

f(x)e−
2πi
N
ω′ x. (2)

3 TSR invariant envelopes: Basic facts

Definition 1 : Let f ∈ Wn, x0 ∈ Rn. The function g ∈ Wn is called translation of f when
g(x) = f(x− x0).

Theorem 1 : Let g ∈Wn be any translation of f ∈Wn. Then |G(ω)| = |F(ω)| for ω ∈ Rn.

Definition 2 : Let f ∈ G∗n,N , 0 ∈ Rn. Then function Φf : Rn → R+
0 is called normalized

spectrum of non-zero, finite gray image f when

Φf(ω) =
∣∣∣∣
F(ω)
F(0)

∣∣∣∣ . (3)

Definition 3 : Let f ∈ Wn, x0 ∈ Rn. Let Q ∈ Rn×n be orthogonal matrix. Function g ∈ Wn is
called general rotation of f when g(x) = f(Qx− x0).

Theorem 2 : Let f ∈ Wn. Let g ∈ Wn be any general rotation of f with matrix Q. Then
|G(ω)| = |F(Qω)| for ω ∈ Rn.

Definition 4 : Let f ∈ G∗n,N , ω ≥ 0. Then function Lf : R+
0 → [0; 1] is called lower envelope

when
Lf(ω) = min

‖ω‖=ω
Φf(ω) (4)

and function Uf : R+
0 → [0; 1] is called upper envelope when

Uf(ω) = max
‖ω‖=ω

Φf(ω). (5)

Theorem 3 : Let f ∈ G∗n,N . Let g ∈ G∗n,N be any general rotation of f. Then Lf(ω) = Lg(ω)
and Uf(ω) = Ug(ω) for ω ∈ R+

0 .

Definition 5 : Let x ∈ Rn, a ∈ R+. Let f, g ∈Wn. Then function g(x) = f
(
x
a

)
is called scaling

of f with scale a.

Theorem 4 : Let g ∈Wn be scaling of f ∈Wn with scale a > 0. Then G(ω) = an F (aω) .

Definition 6 : Let T be set of continuous functions t : R → R. The space of envelopes is
defined as E = {e : R+

0 → [0; 1] | e (0) = 1, e ∈ T }.

Definition 7 : Let r : E → R+ be a function satisfying

∀α ∈ R+ ∀ω ∈ R+
0 : r

(
Lf

(ω
α

))
= α r (Lf(ω)) , (6)

where Lf is lower envelope of f ∈ G∗n,N . Then ω∗ = r(Lf) is called referential point of Lf .



Theorem 5 : Let λ = 1
2 . Let h(x) = min{ω ∈ R+,Lf(ω) ≤ x}. When h(λ) exists, then

ω∗ = h(λ) = r(Lf(ω)) satisfies the referential point definition.

Definition 8 : Let Lf ,Uf be envelopes of f ∈ G∗n,N . Let ω∗ = r(Lf) > 0 be referential point of
lower envelope Lf . Then functions

L∗f (ω) = Lf(ω∗ ω), U∗f (ω) = Uf(ω∗ ω) (7)

are called relativized lower and upper envelope of f, respectively.

Theorem 6 : Let g ∈ G∗n,N be scaling of f ∈ G∗n,N . Then L∗f (ω) = L∗g(ω) and U∗f (ω) = U∗g(ω).

Theorem 7 : Relativized envelopes L∗f (ω),U∗f (ω) are TSR invariant.

The TSR invariant envelopes L∗f (ω),U∗f (ω) were derived for non-zero finite gray image
f ∈ G∗n,N but will be used for binary image recognition.

4 Application to discrete binary 2D image

Discrete binary 2D image from B+
2,N is a typical product of segmentation or thresholding of

discrete gray 2D image from G+
2,N , which is traditional “gray photo” of size N × N . The

theoretical results of previous chapters were obtained for G∗n,N . Thus, they are valid for B∗2,N .
But any discrete image from B+

2,N is only an approximation of image from B∗2,N . Respecting
these facts, we can approximate TSR invariant envelopes. Digital processing of binary 2D image
consists of five steps:

1. approximation of B∗2,N as B+
2,N

2. approximation of F2(ω1, ω2) as F2,N (ω1, ω2)

3. approximation of Φf(ω1, ω2) as Φ+
f (ω1, ω2)

4. approximation of Lf(ω),Uf(ω) as L+
f (ω),U+

f (ω)

5. approximation of L∗f (ω),U∗f (ω) as L⊕f (ω),U⊕f (ω)

The first step is only hypothetic discretization of given binary 2D image. Practical digital
processing begins from B+

2,N . The second step is realizable via discrete Fourier transform (DFT),
which is fast (FFT) in case when N is power of two. The third step produces a sparse matrix
of normalized absolute values of DFT spectrum. The values of Φ+

f (ω1, ω2) are calculated via
bicubic spline interpolation for any ω1, ω2 ∈ R. It enables to calculate values of L+

f (ω),U+
f (ω)

for ω ∈ R+
0 in the fourth step. The polar transform ω1 = ω cosϕ, ω2 = ω sinϕ is used for

ϕ ∈ [0, 2π) and equidistant evaluation of Φ+
f (ω cosϕ, ω sinϕ), which helps to localize extreme

values of L+
f (ω),U+

f (ω). The last step analyzes the lower envelope L+
f (ω) to obtain referential

point ω+ ∈ R+ satisfying L+
f (ω+) = 0.5. The adequate relativized envelopes are calculated as

L⊕f (ω) = L+
f (ω+ ω), U⊕f (ω) = U+

f (ω+ ω). (8)

Decision making based on L⊕f (ω),U⊕f (ω) can be realized as artificial neural network (ANN) or
in the style of variation calculus.



5 Variation approach

Bipolar perceptron and its learning has been build on discrete samples of upper envelope U∗f (ω)
according to the formula

y = sign

(
w0 +

N∑

k=1

wk U∗f (ωk)

)
. (9)

In the case of equidistant values with 4ωk → 0+ and N →∞ the sum comes to integral

If =

b∫

a

w(ω) U∗f (ω) dω, (10)

where w : R+
0 → R is unknown weight function. Denoting w0 = θ we obtained integral perception

formula

y = sign


θ +

b∫

a

w(ω) U∗f (ω) dω


 , (11)

which uses the whole envelope U∗f (ω) instead of its samples. Let m ∈ N be number of patterns,
where the whole envelope pattern is a pair (ek(ω), y∗k), y

∗
k ∈ {−1; +1} is given output of kth

pattern and ek : R+
0 → [0; 1] is envelope U∗fk of kth pattern.

Here y∗k = +1 means that kth pattern belongs to given class and y∗k = −1 means that it is
false. In direct analogy with bipolar perceptron learning the learning conditions are

θ +

b∫

a

w(ω) ek(ω) dω = y∗k for k = 1, . . . ,m. (12)

Except of system of dependent envelopes e1, . . . , em, there are infinite number of weight functions
w(ω) which solve the linear system. According to bipolar perceptron methodology the solution
w(ω) must have the minimum possible Euclidean norm ‖w(ω)‖ or 1

2‖w(ω)‖2 respectively. The
learning task is then converted to variation optimization problem

1
2

b∫

a

w2(ω) dω = min
w,θ

(13)

b∫

a

w(ω)ek(ω) dω = y∗k − θ for k = 1, . . . ,m. (14)

Applying the technique of Lagrange multipliers we obtain single functional

H =

b∫

a

(
1
2
w2(ω)−

m∑

k=1

λkw(ω)ek(ω)

)
dω =

b∫

a

F(ω,w(ω)) dω. (15)

The absence of w′(ω) in the functional H implies ∂F
∂w′ = 0 and thus the Euler equation is

degenerated to ∂F
∂w = 0. So, we have

w(ω)−
m∑

k=1

λkek(ω) = 0, (16)

which is equivalent to

w(ω) =
m∑

k=1

λkek(ω). (17)



The optimum weight function is only a linear combination of pattern envelopes. In the case of
linear independent pattern envelopes the space of optimum weight functions has full dimension
m, which enables to solve the linear system

b∫

a

w(ω)el(ω) dω = y∗l − θ for l = 1, . . . ,m. (18)

Then the substitution comes to

m∑

k=1

λk

b∫

a

ek(ω)el(ω) dω = y∗l − θ. (19)

Denoting

ak,l =

b∫

a

ek(ω)el(ω) dω, bl = y∗l − θ, (20)

we have Aλ = b.

The general solution is then λ = A+b, where A+ is pseudoinversion of A and vector b
lineary depends on threshold θ according to formula b = y∗ − θv with v = (1, . . . , 1)′ ∈ Rm.
The threshold value θ is also subject of optimization. The symmetry of A,A+ matrices will help
to minimize

q(θ) =
1
2

b∫

a

w2(ω) dω for θ ∈ R. (21)

It is easy to obtain

q(θ) =
1
2

b∫

a

(
m∑

k=1

m∑

l=1

λkek(ω)λlel(ω)

)
dω =

1
2

m∑

k=1

m∑

l=1

λkλl

b∫

a

ek(ω)el(ω) dω =

=
1
2

m∑

k=1

m∑

l=1

λkλlak,l =
1
2
λ
′
Aλ =

1
2

(A+b)′AA+b =
1
2
b
′
A+AA+b = (22)

=
1
2
b
′
A+b =

1
2

(y∗′ − θ v′)A+(y∗ − θ v) =
1
2
y∗′A+y∗ − θ v′A+y∗ +

θ2

2
v′A+v.

The optimality condition q′(θ) = 0 comes to threshold value

θopt =
v′A+ y∗

v′A+ v
. (23)

In the special case of complete envelope analysis we use a = 0, b→ +∞.

The learning algorithm can be summarized as:

1. Input m, a, b as pattern number, lower and upper bound, respectively.

2. Input ek(ω), y∗k as pattern for k = 1, . . . ,m.

3. Set v = (1, . . . , 1)′ ∈ Rm.

4. Form A ∈ Rm×m as A =
b∫
a

e(ω)e′(ω) dω.

5. Calculate θopt = v′A+ y∗
v′A+ v

.

6. Form b ∈ Rm as b = y∗ − θoptv.
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Figure 1: PCA of sampled envelopes

7. Form λ ∈ Rm as λ = A+b.

8. Then wopt(ω) = λ
′e(ω).

The recognition scheme can be written as

y = sign


θopt +

b∫

a

wopt(ω)e(ω) dω


 . (24)

6 Results

It was thought about following classes: (S) Squares, (R) Rectangles, (Et) Equilateral triangles,
(It) Isosceles right triangles, (H) Hexagons, (C) Circles, (E) Elipses. Each class is represented
by 70 discrete realizations. Images were tansformed and the contours of amplitude spectra
and relativized envelopes were studied. Using finite number of samples from lower and upper
relativized envelopes L∗f and U∗f , we can use PCA for patterns depicting. Two most significant
principal components are able to separate seven classes. Results of PCA are depicted in Fig. 1.
The TSR invariant system is able to recognize all seven classes of objects. Seven weight functions
were obtained, one for each class. The first example was binary image of square. Amplitude
spectrum (contours) is dpicted in Fig. 2. Resulting TSR invariant envelopes are included in
Fig. 3. Acquired weight function for recognition of this class is depicted in Fig. 4. Second,
binary image of circle was taken. Amplitude spectrum is dpicted in Fig. 5. Resulting TSR
invariant envelopes are included in Fig. 6. Acquired weight function for recognition of this class
is depicted in Fig. 7.

7 Conclusions

The article present the application of TSR invariant envelopes based on Fourier transform of
2D binary image. The envelopes were used for 2D binary image recognition. There are two
basic approaches: envelope sampling in isolated points and variation approach on compact
interval. Both approaches were used for classification to seven classes of binary images. Two
most significant principal components of PCA are able to separate the classes in the space of
sampled envelopes. The calculus of variations helps to build up a new generation of binary
image recognizers, where any class is represented via weight function.
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Figure 2: Spectrum of square
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Figure 3: Envelopes of square
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Figure 5: Spectrum of circle
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Figure 6: Envelopes of circle
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