
MATLAB-BASED TOOLS FOR NONLINEAR SYSTEMS
M. Ondera

Department of Automation and Control, Faculty of Electrical Engineering and Information Technology
Slovak University of Technology in Bratislava

Abstract

Custom tools for MATLAB supporting analysis and design of nonlinear control
systems are introduced in this paper. The paper demonstrates their use to solve
sample nonlinear control problems and presents some of the MATLAB algorithms
involved. A lot of attention is dedicated to a rather unusual collaboration of Simulink
and Symbolic Math Toolbox that was employed in creation of the tools.

1 Introduction
Nonlinear control systems have one principal disadvantage in comparison with their linear

counterparts – there is no general nonlinear control theory, which means that it is impossible to find
universal methods valid for analysis and/or synthesis of the whole class of nonlinear systems. Instead,
techniques whose applicability is limited to a certain subgroup of systems with several properties in
common are used. This “non-uniformity” of nonlinear techniques is probably one of the reasons why
methods of nonlinear control do not have as good support in professional program products as linear
ones. And yet, considering higher difficulties connected with nonlinear methods, some computer aid to
support them would be more than convenient.

In order to cope with this situation (at least partially), we have created custom MATLAB*-based
program tools supporting several methods of nonlinear control theory and grouped them into a toolbox
named NelinSys. This way we tried to bridge the gap between what can be solved with MATLAB (in
the field of nonlinear control) and what is offered by MATLAB as ready-made functions, blocks or
toolboxes. The NelinSys toolbox contains tools for four methods – phase plane analysis, analysis of
limit cycles via harmonic balance, exact linearization and gain scheduling. Other tools are being
prepared, e.g. a tool for velocity linearization, which is in fact already made, although not included in
the toolbox yet – see [3] for details.

The paper is organised as follows. §2 introduces the NelinSys toolbox by describing its four
modules. It also contains a short description of each of the nonlinear methods that are supported by the
toolbox – a more comprehensive description of the methods is available in [1]. §3 then shows how to
apply the tools in order to solve sample problems of nonlinear control theory. §4 deals with the
implementation of the tools and discusses the most important parts of MATLAB source code,
especially those that ensure collaboration of Simulink and Symbolic Math Toolbox. Finally, §5
concludes the paper.

2 Description of the tools
The NelinSys toolbox consists of four modules, each of them providing support for different

nonlinear method. All of the modules are described in this section.

First of the tools included in the NelinSys toolbox is dedicated to phase-plane analysis, which is
a simple graphical method for analysis of 2nd-order nonlinear systems. Its main idea is to construct
motion trajectories of a 2nd-order system corresponding to different initial conditions in phase plane
and determine qualitative features of the system – number, types and stability of its equilibrium points
and/or limit cycles – by their examination. Analysis of a nonlinear system via phase-plane consists of
two basic steps – construction of a phase-plane portrait and its qualitative evaluation. From these two,
usually the first step is more time-consuming than the other. Therefore, the aim of the NelinSys phase-
plane analysis tool is to give a user an opportunity to construct phase-plane portraits easily. The tool is
composed of several Simulink blocks (see Figure 1) from which a user chooses those he needs
according to the system specifications (1st-order, 2nd-order, with or without hard nonlinearities) and

 * In the whole paper, every reference to MATLAB relates to the version 5.2.

interconnects them into a simulation scheme – in the simplest case the scheme involves only two
blocks, one for calculation of a numerical solution of the system and the other for graphical plot of the
phase-plane portrait. Another advantage of using Simulink for obtaining phase-plane portraits is that
while the simulation is running, user can observe how the portrait is being generated and get additional
information about the nonlinear system this way.

The second tool from the NelinSys toolbox is devoted to limit cycle analysis based on harmonic
balance or, more precisely, to a so-called two-characteristics method. The method is suitable for
analysis of nonlinear control loops consisting of a high-order linear part and an isolated static
nonlinearity (Figure 2). There are two basic principles that the method takes advantage of: first, if the
linear part of the system works as a low-pass filter, then (for calculation purposes) the nonlinearity can
be substituted by a so-called describing function – see [1] or [4] for further details – and second, if
there exist a limit cycle in the system, then its approximate amplitude a and approximate frequency ω
can be determined by a solution of the harmonic balance equation

)(

1)i(
aF

F
e

L −=ω (1)

where FL(iω) stands for the frequency transfer function of the linear part and Fe(a) for the describing
function of the nonlinearity. Equation (1) can be solved either analytically, or graphically. In the latter
case, which is sometimes referred to as the Two-Characteristics Method, two parametric curves are
plotted in the complex plane, one that corresponds to the Nyquist plot of the linear part FL(iω) and the
other to the graphical plot of the right-hand side of the equation (1) i.e. to the term -1/Fe(a). If the two
curves have an intersection, then a limit cycle exists in the system and its quantitative parameters are
the values of a and ω corresponding to the intersection. In case of more intersections, there are more
limit cycles with different amplitudes and/or frequencies.

The Two-Characteristics Method tool included in the NelinSys toolbox gives a hand with the decision
if there exists a limit cycle in a user-specified nonlinear system (of the Figure 2 structure) by plotting

Figure 1: The NelinSys toolbox – Phase-Plane Analysis blockset

u e y 0

– +
GN

Isolated nonlinearity

FL

High-order linear part

Figure 2: Nonlinear system suitable for harmonic-balance analysis of limit cycles

the two curves in the complex plane (amplitude and frequency ranges are defined by user). Moreover,
besides GUI version of the tool (Figure 3) there is also a text-based version, which is able to calculate
the parameters of the limit cycle(s) analytically as well, by employing Symbolic Math Toolbox. The
tool supports four types of nonlinearities so far – ideal relay, relay with dead-zone, relay with
hysteresis and saturation.

Next of the NelinSys tools deals with exact linearization. The objective of the method is to
control a nonlinear system given in the form

)(

)()(
xhy

uxgxfx
=

+=&
 (2)

by turning it into a linear and controllable one i.e. such that can be described by linear state-space
equations

Cqy

BvAqq
=

+=&
 (3)

with a help of nonlinear state-space transformation q = q(x) and nonlinear state feedback u = u(x,v).
Once this is done, we can design a stabilizing linear controller for the linearized input v using arbitrary
suitable linear control design method, e.g. pole placement. If (2) is a controllable SISO system, then
the objective of the method can be met by applying nonlinear transformation

⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

==

−

−

)(
)(

...
)(

)(

)(

1

2

xhL
xhL

xhL
xh

xqq

r
f

r
f

f

 (4)

and nonlinear state feedback

 ()vxhL
xhLL

u r
fr

fg

+−= −)(
)(

1
1 (5)

Figure 3: The NelinSys toolbox – Two-Characteristics Method tool (GUI version)

The L is a so-called Lie derivative operator defined as

)()()(
1

xf
x
xhxhL i

n

i i
f ∑

= ∂
∂

= (6)

and r is the relative degree of the system; it has to be equal to the system order n for the transformation
(4) to be complete. A more detailed description of exact linearization can be found in [1] or [4].

The NelinSys exact linearization module is composed of two submodules, one dedicated to
calculation of a linearizing controller (Figure 4) and the other to performance evaluation of thus
designed control loop (Figure 5). The use of the tool is very easy – to a user-specified nonlinear
system (2) it calculates necessary transformations (4) and (5), puts them as parameters into
corresponding Simulink blocks, creates a ready-to-run Simulink simulation model supplemented with

Figure 4: The NelinSys toolbox – Exact linearization controller design tool (SISO GUI version)

Figure 5: The NelinSys toolbox – Exact linearization blockset for Simulink

a linear pole placement controller and lets the user judge the performance of the loop. Besides SISO
systems, the NelinSys toolbox can also handle exact linearization of MIMO systems with the same
number of inputs and outputs.

The last of the NelinSys modules provides support for gain scheduling. The basic idea of gain
scheduled control of a nonlinear system is to design multiple linear controllers (instead of designing a
single nonlinear one) based on different operating points and to switch between them according to
current operating point. This idea can be further extended by parameterization of the controllers,
which practically turns switching into continuous adjustments of controller parameters. A more
detailed description of the method together with some consequences and recommendations can be
found in [1]. In the following, design of a gain scheduled state-space controller (also called extended
linearization) will be considered. The method assumes a nonlinear system given by nonlinear state-
space equations

)(

),(
xhy

uxfx
=
=&

 (7)

If (x0, u0) is an equilibrium point of the system, then by a Taylor expansion of the nonlinear functions f
and h and by neglecting higher-order terms one can get a linear approximation of the system dynamics

xCy

uBxAx
∆=∆

∆+∆=∆

0

00&
 where ∆x = x – x0, ∆u = u – u0, ∆y = y – y0 (8)

As this approximation is valid only in a close neighbourhood of the equilibrium point, so is the control
design based upon it. And here come the ideas of gain scheduling – let us design different controllers
for different equilibrium points and switch between them or, better than that, let us design a controller
whose parameters will change according to current operating point continuously. In order to do that,
first we have to describe equilibrium points (x0, u0) of the system (7) with as few independent
parameters as possible. These parameters, so-called scheduling variables, are chosen so that they are
equal to one or more measurable system variables, e.g. the desired value w, the system output y or the
control action u. The reason for that is obvious – once the controller is implemented, scheduling
parameters are replaced with actual measured values. In SISO case, one parameter is usually enough
to describe the equilibrium points. If we denote the parameter as α then (8) can be rewritten as

[] [] []

[])()()(

)()()()()(

000

00000

ααα

ααααα

xxCyy

uuBxxAxx
dt
d

−=−

−+−=−
 (9)

A state-space controller designed to control this system can be described by the equation

 u = u(w, x) = u0(α) + k0(α) [w – w0(α)] – K(α) [x – x0(α)] (10)

Feedback part of the control law K(α) can be computed via pole placement from

 ()[] ()∏
=

−=−−
n

i
ipsKBAsI

1
00)()()(det ααα (11)

and feedforward part as

 [])()()()()(
1)(

0
1

000
0 ααααα
α

BKBAC
k −−

−= (12)

This will assure that the closed loop system will have desired poles pi, i = 1, 2, ..., n, for arbitrary α i.e.
for any of its equilibrium points.

Similarly as the NelinSys exact linearization module, the gain-scheduling tool also incorporates
two parts – a controller design part (Figure 6) and a simulation part. While the first one lets a user
calculate a gain scheduled controller based on state-space equations of a nonlinear system, desired
poles of the closed loop and desired scheduling variable, the other serves as a verification tool and lets
him decide if and how the control design satisfies desired performance criteria by means of Simulink
simulation. And again, the use of the tool is very simple, leaving no unnecessary calculation to the
user.

3 Application of the tools
This section contains two examples demonstrating application of the NelinSys tools to solution

of sample problems of nonlinear analysis and nonlinear control design.

Example 1
Let us consider a nonlinear system with the structure according to Figure 2, where the transfer

function of the linear part is

ss

sFL 5,0
2)(2 +

= (13)

and the nonlinearity GN is a relay with hysteresis with gain K = 2 and hysteresis width B = 0,5. The
task is to find whether there exists a limit cycle in the system and if so to determine its parameters.

Figure 6: The NelinSys toolbox – Gain-scheduling controller design tool (SISO GUI version)

Figure 7: Analysis of limit cycles with a help of Two-Characteristics method

Since the nonlinear system is of required type, we can use the Two-Characteristics-method tool
to solve the problem. If we provide the tool with input data, we obtain the plot (Figure 7) from which
it is possible to conclude that there is one limit cycle in the system – the two curves have one
intersection. Approximate parameters of this limit cycle – its amplitude a = 1,7 and frequency ω = 1,7
– can be determined analytically by a solution of the harmonic balance equation (1). In most cases,
they can be calculated with a help of the text-based version of the tool that incorporates Symbolic
Math Toolbox as a solver. However, there are also cases in which Symbolic Math Toolbox fails to
find an explicit analytical solution of (1) so it has to be calculated manually.

As (13) is a 2nd-order linear system and relay with hysteresis is a static nonlinearity, we can
alternatively analyze the same system using NelinSys Phase-Plane Analysis tool. This analysis is very
easy, because all we need to do is just to build a simulation (Figure 8) from the blocks included in the
NelinSys toolbox (Figure 1) and standard Simulink Scope block, specify parameters of the blocks and
run it. During the simulation we can observe how the phase-plane portrait (Figure 9) is being
generated and afterwards we can accordingly judge the limit cycles.

Utilizing knowledge from phase-plane analysis theory and the simulation result in Figure 9, we
come to the same conclusion as before – there is one limit cycle in the system because there is one
isolated closed path in the phase-plane plot. Moreover, we can add that the limit cycle is stable
because all neighbouring system trajectories converge to the closed path. The quantitative parameters
of the limit cycle can be determined by exploring the time-plot in Figure 10 – the amplitude of
sustained oscillations is approximately a = 1,716 and the period is T = 3,8s, which corresponds to the
frequency ω = 1,653.

Figure 8: Analysis of limit cycles in phase plane – simulation scheme for Simulink

Figure 9: Analysis of limit cycles in phase plane – phase-plane portrait of the system

Example 2
The task is to design a nonlinear controller to a Two-tanks without interaction system described

by nonlinear state-space equations

2

21

1

2

1

0
1

xy

u
xx

x
x
x

=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛

−
−

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
&

&

 (14)

Since (14) suits both the system description required by exact linearization (2) and by gain
scheduling (7), we can use either of the methods. Let us choose exact linearization first and let us
employ NelinSys exact linearization module (Note: for better readability of the program output,
text-based version of the controller design tool is used in the following example, user input is written
in italics).

Exact linearization for SISO systems

 .
State-space equations: x = f(x) + g(x) u
 y = h(x)

System order: 2

System matrix: f(x) = [-sqrt(x1); sqrt(x1)-sqrt(x2)]
Input matrix: g(x) = [1; 0]
Output matrix: h(x) = x2

Controllability: system is controllable if the following expression is nonzero:

 1
 - 1/2 -----
 1/2
 x1
Transformation equations:
 q1 = x2
 q2 = x1^(1/2)-x2^(1/2)

Relative degree of the system: 2

Nonlinear feedback: u =
 x1 1/2
 ----- + 2 x1 v
 1/2
 x2

This way we have calculated the state-space transformation (4) and the linearizing control law (5)
necessary to turn the nonlinear system (14) into the form

() ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛

2

1

2

1

2

1

01

1
0

00
10

q
q

y

v
q
q

q
q
&

&

 (15)

Figure 10: Analysis of limit cycles in phase plane – time response

i.e. to a linear and controllable form. In order to complete the controller synthesis, we need to design a
linear controller for (15). The linear controller can be designed using arbitrary linear technique,
however, if pole placement is chosen, special blocks from the NelinSys exact linearization blockset
(Figure 5) can be utilized and performance-evaluating simulation can be started immediately.
Simulink scheme used for the simulation is in Figure 11, simulation result in Figure 12.

Now let us try gain scheduling and the NelinSys gain-scheduling module. Again, in order to
improve the readability of the output, the use of the text-based version of the controller design tool
will be illustrated instead of the GUI version.

Gain Scheduling control for SISO systems
--
 .
Nonlinear system: (1) x = f(x,u)
 y = h(x,u)
 .
 (2) x = f(x) + g(x) u
 y = h(x)

Choose one of the options: 2

System order: 2

System matrix function: f(x) = [-sqrt(x1); sqrt(x1)-sqrt(x2)]
Input matrix function: g(x) = [1; 0]
Output matrix function: h(x) = x2
 .
System linearization: /|x = A /|x + B /|u
 /|y = C /|x + D /|u

Figure 11: Exact linearization – simulation scheme for Simulink

Figure 12: Exact linearization – simulation results

A =
 [1]
 [- 1/2 ----- 0]
 [1/2]
 [x1]
 []
 [1 1]
 [1/2 ----- - 1/2 -----]
 [1/2 1/2]
 [x1 x2]
B =
 [1]
 []
 [0]
C =
 [0 1]
D =
 0

System equilibrium points: u = x2^(1/2), x1 = x2

Desired poles of the closed-loop system: [-2 -2]

Controller for the system linearization: /|u = f0 /|w - K /|x
f0 =
 1/2
 8 x2
K =
 [1 1 1/2]
 [- ----- + 4 1/2 ----- - 4 + 8 x2]
 [1/2 1/2]
 [x2 x2]

Gain Scheduling type: (1) no scheduling (fixed operating point)
 (2) input scheduling (w)
 (3) output scheduling (y)
 (4) mixed scheduling (m*w+(1-m)*y)
Selected scheduling type: 2

Control action: u =

 1/2 1/2 3/2
 (-w + 4 w) x1 (-w + 8 w - 16 w) (x2 - w)
 - ---------------- + 4 w + 1/2 --------------------------------
 w w

After we are ready with the calculation of the control law, we can evaluate performance of the closed-
loop system by means of a Simulink simulation. The scheme, composed of blocks from the NelinSys
gain-scheduling blockset, is in Figure 13, simulation results in Figure 14. Although in the example
above input scheduling was considered, with a different scheduling variable the control law would be
different as well. Therefore, Figure 14 demonstrates two cases – the green line corresponds to input-
type whereas the red line to output-type scheduling; the blue line is the desired value w.

Figure 13: Gain scheduling – simulation scheme for Simulink

4 Implementation details
The NelinSys toolbox was designed with the intention to be a user-friendly and intuitive

“plug-in” for MATLAB – or rather for Simulink (in fact, the toolbox is encapsulated as a Simulink
library, although it contains links to pure-MATLAB applications). Therefore, from users’ point of
view it behaves just like any other Simulink blockset and anybody who wants to use it needs no
further knowledge than basic MATLAB/Simulink navigation and, of course, at least a basic level of
nonlinear control theory. However, NelinSys can be also interesting from developers’ point of view,
because its MATLAB implementation involves a few unusual features; some of them will be
discussed in this section.

Probably the most important feature is the collaboration of Simulink and Symbolic Math
Toolbox. The need for this collaboration results from the fact that all NelinSys’ modules (perhaps
except for the Two-Characteristics Method tool) require both symbolic and numerical calculations.
Exact linearization for instance – in the control design process, large amount of symbolic computation
is used (e.g. calculation of analytical partial derivations of functions, algebraic operations with
functional matrices, etc.) whereas consequential simulation of the closed-loop system is a numerical
task. Thanks to Simulink + Symbolic Math Toolbox collaboration it is possible to use the control law
in simulation in symbolic form. That means a lot because without the collaboration, after calculation
of the control law a user would need to create a simulation scheme manually by converting the control
law from the symbolic form to a chain of standard Simulink blocks (of course, this would also mean
the necessity to modify the scheme each time the system description of the original nonlinear system is
changed).

So far, Simulink is completely numerical i.e. there is not a single block able to work with
symbolic variables. Nevertheless, since it contains user-definable blocks such as MATLAB Fcn and
S-function, symbolic capabilities can be incorporated into Simulink by a developer. This was done as a
part of implementation of NelinSys. Besides S-function blocks, there were two other services utilized
in making Simulink understand symbolic data – the Subsystem block from standard Simulink /
/ Connections library and the Mask Subsystem item from Simulink’s Edit menu. S-functions allow
a developer to create custom Simulink blocks whose behaviour is determined by a program code
consisting of arbitrary MATLAB commands (i.e. including commands from Symbolic Math Toolbox).
Mask Subsystem, on the other hand, helps to create a user-friendly interface between S-function code
and simulation scheme, processes user-specified input parameters and transforms them into the form
required by the S-function. The transformation is carried out via block initialisation commands that can
again take advantage of Symbolic Math Toolbox. Although symbolic expressions cannot be used as
block parameters, string expressions can, which means that with a help of sym-string conversion
commands char and sym symbolic values can be specified to the blocks.

The principle described in previous paragraph was more or less used in programming of almost
every Simulink block contained in the NelinSys toolbox. In the following, the Nonlinear SISO system

Figure 14: Gain scheduling – simulation results

(State-Space model) block’s implementation is analyzed as a representative example. Internal structure
of the block is depicted in Figure 15 and its parameters setup in Figure 16.

User has to specify three things – system order, system matrix-functions f(x), g(x), h(x) and initial
conditions. While there are no problems with the first and the third one (they are numerical entries),
the matrix functions have to be treated in a different way – the block’s mask treats them as strings,
block initialization commands transform them and pass them to the S-function, which finally works
with them as with symbolic objects. As can be seen in Figure 16, each of the matrix functions can be
specified either as a symbolic expression or as an identifier of a symbolic variable. The latter allows
the block to use variables from MATLAB workspace – typically those that were put there by a
controller design tool (Figure 4, Figure 6) – so that a simulation can be started immediately after the
control law is calculated, while the former is usually used when a stand-alone simulation is needed. It
is also possible to combine the two options, e.g. f(x), g(x) can be specified as a symbolic expression
and h(x) as an identifier, however, this is hardly ever necessary.

The initialization commands of the block (see the code listed below) first check which of the
two representations for f(x), g(x) and h(x) (symbolic expression or identifier) is to be used, search the
expressions for unknown symbols (the execution is stopped if there are any), check if matrix
dimensions are appropriate according to system order and, finally, adjust the parameters to the form
convenient for the S-function.

Figure 15: Internal structure of the Nonlinear SISO system (State-Space model) block

Figure 16: Parameters set-up screen of the Nonlinear SISO system (State-Space model) block

% Overenie spravnosti zadania parametrov bloku %
if ~isempty(F) & (Fp == 0)
 F = sym(F);
elseif isempty(F) & (any(Fp ~= 0))
 F = sym(Fp);
else
 error(['Matrix f(x) unspecified or specified more than once - cannot
continue!']);
end

if ~isempty(G) & (Gp == 0)
 G = sym(G);
elseif isempty(G) & (any(Gp ~= 0))
 G = sym(Gp);
else
 error(['Matrix g(x) unspecified or specified more than once - cannot
continue!']);
end

if ~isempty(H) & (Hp == 0)
 H = sym(H);
elseif isempty(H) & (any(Hp ~= 0))
 H = sym(Hp);
else
 error(['Matrix h(x) unspecified or specified more than once - cannot
continue!']);
end

% Zisti si symbolicke premenne, ktore vystupuju vo vyrazoch %
premF = strrep(strrep(findsym(sym(F)),', ',''),',',' ');
premG = strrep(strrep(findsym(sym(G)),', ',''),',',' ');
premH = strrep(strrep(findsym(sym(H)),', ',''),',',' ');

% Premenne x1, x2, ..., xN su korektne, preskoc ich %
for k = 1 : n
 premF = strrep(premF, sprintf('x%d',k), '');
 premG = strrep(premG, sprintf('x%d',k), '');
 premH = strrep(premH, sprintf('x%d',k), '');
end

% Ak niektory retazec nezostal prazdny, vyhlas chybu %
if ~isempty(premF)
 error(['Unknown symbol in f(x) expression - cannot continue!']);
end
if ~isempty(premG)
 error(['Unknown symbol in g(x) expression - cannot continue!']);
end
if ~isempty(premH)
 error(['Unknown symbol in h(x) expression - cannot continue!']);
end

% Otestovanie spravnosti rozmerov matic F,G,H (podla "n") %
if ~prod(size(F) == [n,1])
 error(['Invalid matrix dimensions: f(x) - cannot continue!']);
end
if ~prod(size(G) == [n,1])
 error(['Invalid matrix dimensions: g(x) - cannot continue!']);
end
if ~prod(size(H) == [1,1])
 error(['Invalid matrix dimensions: h(x) - cannot continue!']);
end

% Kontrola vektora pociatocnych podmienok (pociatocnych stavov) %
if ~prod(size(pp) == [n,1])
 error(['Invalid dimensions: initial conditions vector - cannot
continue!']);
end

% Nahradenie identifikátorov "xI" identifikátormi "x(I)" %
for k = 1 : n
 F = subs(F, sprintf('x%d',k), sprintf('x(%d)',k));

 G = subs(G, sprintf('x%d',k), sprintf('x(%d)',k));
 H = subs(H, sprintf('x%d',k), sprintf('x(%d)',k));
end

The code of the stavp_siso S-function (see below) implements the behaviour of the nonlinear
SISO system specified by the block parameters. There are n continuous states (where n is the system
order), one input and n+1 outputs – besides the output y of the nonlinear system itself, the block also
outputs the whole state-space vector x. In every time instant a calculation according to system state-
space equations is performed. As the equations are nonlinear and, therefore, their result might not
remain in real domain for some values of system states and/or inputs, it is also checked whether the
result is real (if not, an error message is generated).

function [sys,x0,str,ts] = stavp_siso(t,x,u,flag,n,F,G,H,pp)

switch flag,

% ================= Inicializacna cast s-funkcie ================= %
case 0

 % Definicia stavov, vstupov a vystupov nelinearneho systemu %
 sizes = simsizes;
 sizes.NumContStates = n;
 sizes.NumDiscStates = 0;
 sizes.NumOutputs = 1+n;
 sizes.NumInputs = 1;
 sizes.DirFeedthrough = 0;
 sizes.NumSampleTimes = 1;
 sys = simsizes(sizes);

 % Inicializacia pociatocnych podmienok %
 x0 = pp;

 % Inicializacia "str" ako prazdna matica %
 str = [];

 % Sample times in TS %
 ts = [0 0];

% ================= Vypocet podla 1. stavovej rovnice ================= %
case 1
 sys = eval(F) + eval(G) * u;

 for k = 1 : n
 if ~isreal(sys(k,:))
 error(['At the time instant t = ',num2str(t),'s, the mathematical
 model of the system is no longer valid! Cannot continue the
 simulation!']);
 end
 end

% ================= Vypocet podla 2. stavovej rovnice ================= %
case 3
 sys(1,:) = eval(H); % Ako vystup bloku sa berie nielen vystup systemu... %
 sys(2:n+1,:) = x; % ... ale aj cely stavovy vektor nelinearneho systemu %

% ======================== Nepouzite priznaky ========================= %
case {2, 4, 9}
 sys = [];

% ========================= Spracovanie chyby ========================= %
otherwise
 error(['Unknown flag = ',num2str(flag)]);
end

Besides the need for collaboration of Simulink and Symbolic Math Toolbox, which was the
biggest challenge resulting from creation of the NelinSys toolbox, there were also other minor
problems to cope with during programming. One of them was the necessity to use different sets of
initial conditions for calculation of different phase-plane trajectories (Phase-Plane Analysis tool).

However, according to S-function template, for an nth-order system it is possible to define only n
initial conditions i.e. only one vector of the length n, which would mean that during one simulation it
is possible to calculate (and to plot) only one phase-plane trajectory. This would be a great
disadvantage because it would be almost impossible to read qualitative features of a system from only
one trajectory. Of course, there would be a possibility to draw several trajectories one after another,
but that way we would lose the synchronization i.e. the advantage of seeing how the phase-plane
portrait is being gradually generated (after all, we would have only a static picture). Therefore, for
NelinSys we used another approach: pretending a higher-order system to an S-function. For example,
if we need to have a phase-plane portrait of a 2nd-order system containing 5 trajectories, instead of
5 different pairs of initial conditions we will specify to the S-function a 10th-order system with only
one initial condition vector composed of 10 elements (obviously, the 10th-order system will consist of
equations of the original 2nd-order system repeated in pairs). The approach can be illustrated by a
source code of any of the phase-plane analysis blocks’ S-functions (for the sake of brevity the code is
omitted here, but it can be located in the NelinSys folder; see e.g. the fazrov_auton2.m file).

5 Conclusion
In this paper NelinSys – a custom toolbox for nonlinear control systems – was introduced. It was

shown how to use it in order to solve certain tasks from nonlinear control theory and how some of its
modules were implemented in MATLAB/Simulink. Probably the most interesting side effect of the
programming of the toolbox was the creation of Symbolic Math Toolbox – Simulink collaboration
concept. It has turned out to be very useful in this case and it is possible that it could be also utilized in
other applications where both symbolic calculations and numerical simulations are necessary.

Although even now it provides solid support for nonlinear control, the NelinSys toolbox is being
continually improved. Its first version (with Slovak language interface) was presented in [2] in 2004;
first English version was introduced in February 2005 and since June 2005 it is available via
MATLAB Central – File Exchange. Besides, there were several bug fixes and minor improvements in
the meantime. A new version of the tool, bringing support for other nonlinear methods (e.g. velocity
linearization [3]), is planned to be released soon.

References

[1] M. Huba. Nonlinear Systems [in Slovak]. Vydavateľstvo STU, Bratislava, 2003.
[2] M. Ondera. Program Tools for Analysis and Synthesis of Nonlinear Processes [in Slovak]. Master

thesis. Supervisor: Assoc. Prof. A. Jadlovská. KKUI FEI TU Košice, 2004.
[3] M. Ondera. MATLAB-Based Tool for Velocity Linearization. In: CEEPUS Summer School

„Intelligent Control Systems“, pp. 55-60, Brno University of Technology, Brno, 2005.
[4] J. J. Slotine and W. Li. Applied Nonlinear Control. Prentice Hall, New Jersey, 1991.

Martin Ondera
Katedra automatizácie a regulácie FEI STU Bratislava
Ilkovičova 3, 812 19 Bratislava, Slovak Republic
Tel.: +421 2 60291458
E-mail: Martin.Ondera@stuba.sk

