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Abstract

The paper is devoted to methods of motion observation using image acqusition
toolbox followed by the mathematical modelling of the observed body including
interpolation of its trajectory in the three-dimensional space. Final results are
presented in the environment of virtual reality. Selected algorithms in MATLAB
are included in the paper as well.

1 Introduction
Analysis of videosequences and motion modelling belong to an interdisciplinary area of digi-
tal signal and image processing allowing detection, localisation, identification and prediction
of moving objects components. Research of these topics include analysis of multiple marker
association studied by [8], geometric algebra application analysed by [3] and methods of image
processing [2, 5] including fractal analysis.

Methods of motion modelling have a wide range of applications both in engineering [7], in
biomedicine [1, 6] and in further disciplines.

2 Data Acquisition
A synchronized two camera system for detection of precise position of a selected object in the
three-dimensional space has been applied for data acquisition. Fig. 1 presents the principle of
the whole system arrangement using two cameras Dragonfly connected to the PC. The Dragonfly
is an OEM-style IEEE 1394 board level camera providing control and flexibility for industrial
machine vision tasks. Cameras used in the system have a color CCD sensor with 1024x768
resolution and 15 frames per second. Partial Image Format (sub-sampled) allows the user to
transmit a sub-sampled 640x240 image at up to 50 fps. The 6-pin 1394 standard cable provides
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Figure 1: The two camera measurement system

the camera with both power and a connection to computer having IEEE 1394 plug-in board. The
camera is supported by the original PGR Fly Capture software, but we describe its application
with Image Acquisition Toolbox of the MATLAB. In the used PC Windows XP system is
installed. The camera installation is described by [4].

Multiple Dragonfly’s on the same IEEE-1394 bus are automatically synchronized to each
other at the hardware level. The maximum deviation in the synchronisation is 125 µs of each



other as states the Dragonfly Technical Reference Manual. This synchronisation of cameras has
been verified by analysis of the record of the display of the counter counting 1 kHz pulses. It
means that numbers on the display were changing thousand times per second. On the corre-
sponding picture from each camera the same number on the display has been captured.
______________________________________________________________________________________

clear all
%%% Definition of the input format %%%

cam1=videoinput(’dcam’,1,’Y8_1024x768’); cam2=videoinput(’dcam’,2,’Y8_1024x768’);
%%% The number of pictures for acquisition %%%

deda.FramesPerTrigger=30; strejda.FramesPerTrigger=30;
%%% The search of the source property %%%

src=getselectedsource(cam1); src1=getselectedsource(cam2);
%%% Shutter speed definition %%%

src.Shutter=5; src1.Shutter=5;
%%% Start images acquisition %%%

start(cam1); start(cam2);
%%% Wait for the acquisition to stop %%%

wait(cam1); wait(cam2);
%%% Transfer images to the MATLAB workspace %%%
[f,t]=getdata(cam1); [g,t]=getdata(cam2);

______________________________________________________________________________________

Figure 2: Fundamental commands of the algorithm for the camera image acquisition

The system has been based upon the Image Acquisition Toolbox supporting a wide range of
image acquisition operations from the professional grade frame grabbers to USB-based Webcams.
The toolbox allows the connection hardware, its configuration, video preview, and transfer of the
stream of images directly into the MATLAB environment for their analysis and visualization.

A short program for capture of 30 pictures by cameras and saving them to the hard disc
(acquiring 15 frames per second in the monochrome mode) is presented in Fig. 2. The program
for final display of differences of all saved pictures concentrated in one picture is presented in
Fig. 3.
______________________________________________________________________________________
k=input(’Number of figures = ’);
d(:,:,1)=g(:,:,1);

%%% Compute differences between pictures %%%
for i=1:k-1

d(:,:,1)=imabsdiff(d(:,:,1),g(:,:,i+1));
end
imview(d(:,:,1),[])

______________________________________________________________________________________

Figure 3: Fundamental commands of the algorithm for the final image display

3 Three-Dimensional Modelling
The proposed system presented in Fig. 4 consists of two cameras A and B located in the distance
c. The moving object C represented by a light in this case form a triangle with two fixed points.
In the initial stage presented in Fig. 4(a) it is possible to calibrate the system measuring distances
a1(1), b1(1) and c of the triangle ABC. Using the cosine theorem it is then possible to evaluate
initial angles α1(1) and β1(1) by relation

α1(1) = arccos
b1(1)2 + c2 − a1(1)2

2 b1(1) c
(1)

β1(1) = arccos
a1(1)2 + c2 − b1(1)2

2 a1(1) c
. (2)
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Figure 4: The samera system allowing the evaluation of (a) the initial localization of the light
and (b) the three dimensional coordinates of the selected object using observations for the k-th
pair of camera pictures

The calibration assumes evaluation of horizontal and vertical angles of both cameras.
Using the calibration grid table according to Fig. 5(a) placed in the distance d from each camera
it is possible to find both horizontal shorizontal and vertical svertical sizes of the figure. These
parameters can then be used for evaluation of the limits of angles presented in Fig. 5(b) using
rectangular red and blue triangles estimating in the case of camera A values

αhorizontal = 2 arctan
shorizontal/2

d
(3)

αvertical = 2 arctan
svertical/2

d
(4)

and corresponding limits α1min, α1max, α2min and α2max using the initial point positioning and
initial angles evaluated before. Similar process can be used for camera B.

The observation process provides precisely synchronized pictures from both cameras. The
situation in the k-th observation step is given in Fig. 4(b). The moving object represented
by a light in this case can be detected at first using a simple thresholding method applied to
individual images. Using the results of calibration given in Fig. 5(b) it is possible to convert
the row and column positioning of the light to horizontal α1(k) and vertical angles α2(k) in the
case of camera A and to β1(k) and β2(k) angles in the case of camera B.

The preprocessing of the set of camera pictures during the observations in the k-th obser-
vation step define precisely the triangle ABC in the space with the top and front view presented
in Fig. 4(b). Using the system of coordinates with the origin in the position of camera A and
choosing the axis x in the direction of camera B and y axis in the plane of the initial light
positioning it is possible to evaluate coordinates of point C for each set of camera observations.
In the top view it is possible to find coordinates of point C from size b1(k) evaluated by the sine
theorem in the form

b1(k) = c · sin(β1(k))/ sin(π − β1(k) − α1(k)) (5)
xC(k) = b1(k) · cos(α1(k)) (6)
yC(k) = b1(k) · sin(α1(k)) (7)
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Figure 5: The principle of calibration of an individual camera (a) using the calibration grid
table and (b) evaluating its horizontal and vertical angle limits allowing object localization

In the similar way it is possible to evaluate the z coordinate of point C using relations

b2(k) = c · sin(β2(k))/ sin(π − β2(k) − α2(k)) (8)
zC(k) = b2(k) · sin(α2(k)) (9)

Definition of the three dimensional positioning of the moving object is given in this way in the
chosen coordinate system for each set of camera observation.

Resulting three column matrix of three coordinates of the moving object in each its line
can be further processed and visualized. Results of a selected set of 30 observation is presented
in Fig. 6. The following spline interpolation having similar effect as the increase of the camera
frequency image acquisition can be further used to smooth results.
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4 Virtual Reality Use for Motion Visualization
Virtual reality (VR) environment can be used very efficiently for motion modelling and for the
study of the moving object properties. This kind of modelling enables definition of different
objects that can be included in the final model to make the scenery as realistic as possible.
Moreover it enables the incorporation of results of mathematical or physical modelling to make
movement corresponding to real situations. To build such a model in the case under study it is
possible to use results of data acquisition and processing in the MATLAB environment presented
above. The final image can be transformed into a VR model whose objects can be controlled
from the Simulink environment presented in Fig. 7. The data set evaluated in MATLAB can be
used to control the specific movement of those objects.

The proposed VR model and its control system in Simulink is created as the whole in
the MATLAB environment. For the user of the program it is necessary to capture the image
sequence only. The rest of the process including the image identification, calculation of position
of the light, spline interpolation of its movement, Simulink model creation and the final VR
model creation is fully automatic. The creation of the VRML file using results of MATLAB
modelling with the Virtual Reality Toolbox is enabled by the vrml(gcf,name file) command.
______________________________________________________________________________________
%% VRML Creation %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
figure(5)
% Trajectory of moving object

plot3(siminin(:,1),siminin(:,2),siminin(:,3)); hold on;
% Zero Camera Plane

plot3([0 c xc0 0],[0 0 yc0 0],[0 0 zc0 0],’r’); hold off
% Removing useless graphics

axis tight; box on
set(gca,’XTick’,[]); set(gca,’YTick’,[]); set(gca,’ZTick’,[]);

% Correction of camera position
set(gca,’CameraPosition’,get(gca,’CameraPosition’)/1.8);

% Generating of unique file name
name_file = [’ball_’,num2str(now),’.wrl’];
name_file = [name_file(1:11) name_file(13:end)];

% Create VRML file
vrml(gcf,name_file);

______________________________________________________________________________________

Figure 8: Algorithm for the simple VRML creation

Fig. 8 describes how easy it is to create the creation of the VR model. The most compli-
cated problem in the whole process is in the calculation and plot of a simple and transparent
graph without to much detail objects as shown in Fig. 9. Fig. 10 has been created from the clas-
sical MATLAB Fig. 9 using the vrml(gcf,’my vrml file.wrl’) command only having in mind
that the MATLAB’s Virtual Reality Toolbox is necessary for its execution. The comparison of
Figs 9 and 10 show no difference between MATLAB figure and VRML model not taking into
account that the VRML viewpoint is sightly changed only for the better comparison according
to the original viewpoint.

Commands enabling operations with files (fopen, fread, fprintf and fclose) - in our
case with simple text files - have been used for special modifications like the addition of the
light ball, camera models creation or definition of the scenery highlight in the VR environment.
Fig. 11 represents creation of the yellow sphere (ball) imaging the moving light.

The first part of the code shows calculation of parameters (scale, translation and others)
from the given figure. The second part, definition of the bally variable that contain specification
of the sphere in the VRML language with added values of parameters corresponding to our
problem. The same principle has been used in modelling of cameras A and B. Pre-modelled
cameras have been added from their source text files (camera A.txt and camera B.txt) and
specifically modified to create more realistic VRML scene. For example on the forth line of



Figure 9: Figure for VRML model creation Figure 10: Created VRML model

the code shown in Fig. 12 the word FALSE has been changed to the word TRUE. This change
enables to see the whole VRML scene in colors and with textures. Models of both cameras have
been prepared separately and they are saved in plain text files in the VRML language. The
program reads those files and place their content to the specific place.

The same principle has been used during the creation of the corresponding Simulink model
(Fig. 7) from the template (bally mdl01.txt and bally mdl02.txt) with its code in Fig. 13.
This template has been programmed before and it enables the movement of the light (the yellow
ball) on the trajectory. The object of the light in the VR model called Bally has the property
translation that determines the position of the object and this property is changed in the VR
model by Simulink in the real time.

______________________________________________________________________________________
% Yellow Ball in VRML file
obj = get(gca);
scaleXYZ = obj.PlotBoxAspectRatio./obj.DataAspectRatio;
translationXYZ = [-sum(obj.XLim)/2 -sum(obj.YLim)/2 -sum(obj.ZLim)/2];
position2 = obj.CameraPosition;
fieldOfView = obj.CameraViewAngle*pi/180;
scaleRatio = 1;

bally = [’DEF Bally Transform {’,char(10)...
char(9),’translation ’,num2str(siminin(1,:)),char(10)...
char(9),’scale ’,num2str(1./scaleXYZ*scaleRatio),char(10)...
char(9),’children Shape {’,char(10)...
char(9),char(9),’appearance Appearance {’,char(10)...
char(9),char(9),char(9),’material Material {’,char(10)...
char(9),char(9),char(9),char(9),’ambientIntensity 0.6’,char(10)...
char(9),char(9),char(9),char(9),’diffuseColor 1 1 0’,char(10)...
char(9),char(9),char(9),char(9),’emissiveColor 0.6 0.4 0’,char(10)...
char(9),char(9),char(9),char(9),’shininess 0.2’,char(10)...
char(9),char(9),char(9),char(9),’specularColor 0 0.4 0’,char(10)...
char(9),char(9),char(9),char(9),’transparency 0.2}}’,char(10)...
char(9),char(9),’geometry Sphere {}’,char(10)...
char(9),’}}’,char(10)];
______________________________________________________________________________________

Figure 11: Algorithm for the creation of the yellow ball in VRML



______________________________________________________________________________________
% Reading VRML file and setting Highlight ’TRUE ’ ([84 82 85 69 32])
end_file = [32 32 32 93 10 32 32 125 10 32 93 10 125 10]’;
fid = fopen(name_file,’r’); wrmlbi=fread(fid,’char’); fclose(fid);
wrmlbi = wrmlbi(1:length(wrmlbi)-length(end_file));
wrmlbi(77:81) = [84 82 85 69 32]’;

% Reading and setting of Cameras
fid = fopen(’camera_A.txt’,’r’); camera_A=fread(fid,’char’); fclose(fid);
fid = fopen(’camera_B.txt’,’r’); camera_B=fread(fid,’char’); fclose(fid);

camera_A_mod = [char(9),’rotation ’,num2str([0 0 1 alpha10-pi/2]),char(10)...
char(9),’scale ’,num2str(1./scaleXYZ*scaleRatio),’}’,char(10)];

camera_B_mod = [char(9),’rotation ’,num2str([0 0 1 pi/2-beta10]),char(10)...
char(9),’scale ’,num2str(1./scaleXYZ*scaleRatio),char(10)...
char(9),’translation ’,num2str([c 0 0]),’}’,char(10)];

% Save of modified VRML file with Highlight and Yellow Ball
fid = fopen([’bally’,name_file(6:end)],’w’);
fprintf(fid,’%s’,[char(wrmlbi); bally’; char(camera_A); camera_A_mod’;...

char(camera_B); camera_B_mod’; char(end_file)]);
fclose(fid);
______________________________________________________________________________________

Figure 12: Algorithm for the placing of camera models in VRML scene

The main goal of the MATLAB’s code in Fig. 13 is to put together opening and terminal
part of Simulink code and to tie them with the corresponding unique name of WorldFileName
(name of *.wrl file) for connection between Simulink and VRML. The final part of the code
prepare the data set for the object movement. This data set is interpolated by the spline curve
representing trajectory of the moving object and its values are saved in the *.mat file with the
unique file name.

The last presented part of the code shows in Fig. 14 the method of the activation of
the arbitrary object in the VRML world. In the first half of the code each row of the matrix
simin.signals.values with coordinates of interpolated trajectory is decoupled according to
the value of parameter k. This parameter has the speed affect to the movement of the sphere.
The middle part of the code defining the animation variable represents the main part that is
in this step added to the new VRML file with the moving object. The code is closed as usually
by saving the results into the plain text file.

______________________________________________________________________________________
%% MDL Creation %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Reading MDL from template
fid = fopen(’bally_mdl01.txt’,’r’); bally_mdl01=fread(fid,’char’); fclose(fid);
fid = fopen(’bally_mdl02.txt’,’r’); bally_mdl02=fread(fid,’char’); fclose(fid);

% Save MDL with specific *.wrl file
fid = fopen([’bally’,name_file(6:end-3),’mdl’],’w’);
fprintf(fid,’%s’,[char(bally_mdl01); [’bally’,name_file(6:end)]’; char(bally_mdl02)]);
fclose(fid);

% Structure variable simin for MDL
siminin = [xxc’ yyc’ zzc’];
simin.signals.values = [ones(50,1)*siminin(1,:); siminin; ones(50,1)*siminin(end,:)];
simin.time=[];
save([’bally’,name_file(6:end-3),’mat’],’simin’)
______________________________________________________________________________________

Figure 13: Algorithm for the dynamical creation of Simulink model



______________________________________________________________________________________
%% VRML Creation with Animation %%%%%%%%%%%%%%%%%%%%%
% Calculation of animation
k = 10; % setting of animation speed (higher k = slower animation)
s = simin.signals.values;
L = size(s);

KEY = ((1:k*L(1))-1)/(k*L(1)-1);
KEYVALUE = zeros(k*L(1),3);
for i = 1:3

KEYVALUEm = ones(k,1)*s(:,i)’;
KEYVALUE(:,i) = KEYVALUEm(:);

end

KEYVALUEstr = [];
for i = 1:k*L(1)

KEYVALUEstr = [KEYVALUEstr,char(9),char(9),num2str(KEYVALUE(i,:)),’,’,char(10)];
end
KEYVALUEstr = KEYVALUEstr(1:end-2);

% Definition and calculation of the ball motion
animation = [’DEF Replay_control TimeSensor {’,char(10)...
char(9),’cycleInterval 10’,char(10)...
char(9),’loop TRUE’,char(10)...
’}’,char(10),char(10)...
’DEF Bally_translation_recorded PositionInterpolator {’,char(10)...
char(9),’key’,char(9),’[’,char(10)...
num2str(KEY),’]’,char(10)...
char(9),’keyValue’,char(9),’[’,char(10)...
KEYVALUEstr,’]’,char(10)...
’}’,char(10)...
’ROUTE Bally_translation_recorded.value_changed TO Bally.translation’,char(10)...
’ROUTE Replay_control.fraction_changed TO Bally_translation_recorded.set_fraction’];

% Reading VRML file
fid = fopen([’bally’,name_file(6:end)],’r’); wrmlbi=fread(fid,’char’); fclose(fid);

% Save of modified VRML file with animation of the Yellow Ball
fid = fopen([’ballya’,name_file(6:end)],’w’);
fprintf(fid,’%s’,[char(wrmlbi(1:k(2)+23)); num2str(m)’;

char(wrmlbi(k(2)+23+l(1):end)); animation’]);
fclose(fid);
______________________________________________________________________________________

Figure 14: Algorithm for the VRML animation of the moving sphere

System presented in the virtual reality environment can be studied and observed from the
arbitrary location of the viewer in the space using any zoom level. Selected results are presented
in Figs 15 up to 19 showing different views towards the moving object.

Real computer system enables even more realistic view and the study of the motion en-
abling control of the motion speed as well. System described above presents a very simple
example of possibilities of three dimensional motion modelling following one moving object
only.

Similar approach can be used in the case of detection of several moving objects allowing
the study of their interaction as well.



Figure 15: The back view of the system Figure 16: The view towards the moving ob-
ject from the position of camera A

Figure 17: The view towards the moving ob-
ject from the position of camera B

Figure 18: The side view of the system

Figure 19: The top view of the system



5 Conclusion
The paper presents both technical principles of the moving body detection using the image ac-
quisition toolbox and a synchronized two video cameras system. Specific mathematical methods
of image components localization for processing of each couple of observed images are then used.

Basic principles of the virtual reality visualization presented in the paper enable a very
convenient way of the study of a moving object both in the simple example presented in the
paper and in more complex applications. The paper presents how such a model based on the
MATLAB computational system can be created. The most important algorithms are included
in the paper as well.
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