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Abstract

As a core problem in computing PageRank a stationary probability distribu-

tion vector is solved. We show, that using Tarjan’s reordering in connection

to iterative aggregation-disaggregation method can speed up the convergence

significantly in comparison to standard methods.

1 Introduction

In this work, some new observations in computing PageRank are presented. Tarjan’s algorithm in
connection to an iterative aggregation-disaggregation method seems to result in a new promissing
approach in computing a stationary probability distribution vector of a large-scale stochastic
matrix which forms a core problem in PageRank computing.

It is shown that for some sort of stochastic matrices, the iterative aggregation-disaggregation
method may yield a sequence of vectors which converges much faster to the exact stationary
probability distribution vector than a sequence computed by power method. Such matrices can
be obtatined by Tarjan’s reordering. Because the mentioned iterative method with preprocessing
by Tarjan’s algorithm can be very costly in comparison to the simple use of power method, we
can consider also a threshold adaptation of Tarjan’s algorithm.

The mentioned algorithms are compared in this paper when dealing with two real-looking prob-
lems representing parts of hyperlink structures of the Web. These are two matrices, Stanford
and Stanford-Berkeley matrices [3], the well known examples for testing PageRank algorithms.
The experiments are performed in Matlab using its tools for large sparse matrix computation.

The paper is organized as follows. The basic subjects used are shortly described in the next four
sections. We introduce a definition of PageRank [1, 8] as a stationary probability distribution
vector [12] of a convex combination of a rank one matrix and a matrix reflecting the hyperlink
structure of (a part of) the Web. We describe a basic method (power method) for computing this
vector and some of its properties. Then the iterative two-level algorithm (iterative aggregation-
disaggregation method) [6, 7, 9, 10] and Tarjan’s algorithm are briefly introduced. In the end
of the paper, computational examples comparing the suggested methods and the power method
are presented.

2 What is PageRank

One of the possibilities how to organize the list of Web pages when they are displayed by
some Web search engine as a result of some client’s query is to organize them according to
their PageRank values. PageRank is a vector of positive numbers, each of them corresponds
to a particular page and it is defined as a probability that a random Web surfer is visiting
this Web page [1, 4, 5, 8]. It means that it is a stationary probability distribution vector [12]
of a random process denoted as Markov chain [11]. This process is connected to a stochastic
matrix [12] G, an element Gij of which somehow corresponds to probability that a random surfer
follows to page i via a single hyperlink from page j. In other words, PageRank is defined as
a stationary probability vector of a convex combination of matrix G and some appropriate rank
one stochastic matrix Q [8]. This means that PageRank equals to vector x̂ such that

(αG + (1 − α)Q)x̂ = x̂,



where α ∈ (0, 1) is a suitable constant [5, 8]. All of the columns of Q are equal and can also
characterize some kind of importance of pages. Let us denote

B = αG + (1 − α)Q

in our further considerations.

3 Computing PageRank

Let us stress that due to irreducibility and primitivity of B there exists a unique stationary
probability vector x̂ of B. This follows from Perron-Frobenius theorem [12].

Computing PageRank is extremely large-scale problem. It is spoken about several billions of
pages considered. So that one has to handle with matrix B of such size. Of course, B is sparse
and should be stored and handled in an appropriate way.

The most popular and most simple method for computing stationary probability vector of a sto-
chastic matrix is power method. It generates a sequence of approximations xk given by formula

xk+1 = Bxk

for any positive x0 such that ||x0|| = 1. The limit of the sequence {xk}∞k=0
is unique and equals

to the Perron-Frobenius eigenvector x̂ of B if B is irreducible and primitive [12]. Moreover, the
asymptotic convergence factor is equal to the magnitude of the second largest eigenvalue of B,
which is α in the case of the PageRank matrix B [4, 9, 10]. It means that the approximation
error reduces asymptotically approximately by factor α in each step.

4 Iterative aggregation-disaggregation method

An alternative approach in computing stationary probability distribution vector insists in an
iterative two level algorithm for solving

Bx = x.

It is called the iterative aggregation-disaggregation (IAD) method. The set of events is parti-
tioned into subgroups and some corresponding smaller size problem is solved. Then the obtained
solution is prolonged to the original size and corrected by several steps of some basic iteration
method, e.g. power method, block Jacobi od block Gauss-Seidel methods [11]. One of the basic
questions is the choice of the aggregation groups. In [6] was shown that for some special struc-
ture of B one can obtain the exact solution after at most two iterations of the IAD method.
In [7] this statement was generalized, still the desired structure property may be undetectable in
practical large-scale computing. The only tool for analysing the mentioned structure is Tarjan’s
algorithm. Basically, Tarjan’s algorithm finds a symmetric permutation of a matrix leading to
an upper triangular form with irreducible diagonal blocks [2].

Now we introduce the IAD method. Let G1, . . . , Gn, n ≤ N , be the aggregation groups of events
which are numbered with 1, 2, . . . , N . All of pairs of the sets Gi, i = 1, . . . , n, are assumed to be
disjoint and all of these sets are covering the whole set of events, ∪n

i=1Gi = {1, 2, . . . ,N}. Let
us define the restriction (aggregation) n×N matrix R, Rij = 1 if j ∈ Gi and Rij = 0 otherwise.
For any positive x the prolongation (disaggregation) N × n matrix S(x) is defined by

S(x)ij =
xi

∑
k∈Gj

xk

if i ∈ Gj and S(x)ij = 0 otherwise. Let P (x) be a projection matrix given by

P (x) = S(x)R.



Note that RS(x) = I, I is the identity matrix here. Finally let T = M−1W be a matrix given
by some splitting of I − B, I − B = M − W , which is of weak nonnegative type, i.e. M−1 ≥ 0
and M−1W ≥ 0 [12].

The IAD method consists of several repeating steps. In this part the upper vector index denotes
the order of a vector in a sequence, while the upper matrix index is an exponent.

IAD algorithm.

Step 1. An elementwise positive initial approximation x0, ||x0|| = 1, is selected. The value k is
set to 0.

Step 2. A positive integer s is chosen and an n × n aggregated matrix

RBsS(xk)

is constructed. The associated problem is solved, i.e. a vector z is found, which fulfilles

RBsS(xk)z = z,

||z|| = 1. This step can be called solution on the coarse level .

Step 3. A prolonged vector xk+1,1 of the original size N is computed by

xk+1,1 = S(xk)z.

Step 4. The next approximation xk+1 is computed by xk+1 = T txk+1,1 for an appropriate positive
integer t, where T = M−1W . This step can be called the smoothing step or the correction on

the fine level.

Step 5. The test for convergence is evaluated and then the algorithm finishes with the approxi-
mate solution xk+1 as a result or it continues with Step 2 and with k increased by 1.

Note that the all computed vectors xk are positive and ||xk|| = 1. For any positive x, the
aggregated matrix RBsS(x) is stochastic and primitive. Computing z in Step 2 is assumed to
be carried out exactly. In the place of the iteration matrix T one can choose any nonnegative
matrix with the properties T x̂ = x̂ and I − B = M(I − T ) with some invertible M .

5 Tarjan’s reordering

A structure of nonzero elements of a nonnegative matrix G can be connected with a graph, where
an edge leading from node j to node i represents positivity of element Gij . Then finding the
symmetric permutation resulting in block upper diagonal form with irreducible diagonal blocks
corresponds to finding all of the strong components of the graph. This problem can be solved
by Tarjan’s algorithm [2]. We can also work with a threshold adaptation of this method where
a lower limit for considering a number for nonzero is used.

6 Numerical experiments

We provide a numerical comparison of the introduced algorithms. Stationary probability dis-
tribution vectors are computed by power method and by IAD algorithm with preprocessing by
Tarjan’s algorithm and without it. In tests we deal with data frequently used for PageRank
computation. The matrices representing parts of the Web are Stanford and Stanford-Berkeley
matrices [3]. Let us abbreviate their names to S-matrix and SB-matrix, respectively. To illus-
trate the properties of the data, we introduce some of their characteristics. The sizes of the
matrices are 281 903 × 281 903 and 683 446 × 683 446, respectively. The numbers of nonzero



elements are 2 312 669 and 7 588 111, respectively. Thus the densities of nonzero elements are
about 0.0029% and 0.0016%, respectively, and the average numbers of nonzero elements per
column is 8.2 and 11.1, respectively. The sparsity patterns of them is shown on Figures 1 and 2.
On right hand sides of the figures, the structures of some diagonal blocks are projected. Let us
notice that the S-matrix does not seem to possess any structure, while the SB-matrix looks like
in some way ordered data both in coarse and fine levels.

The results of Tarjan’s reordering algorithm are displayed on Figures 3 and 4. On left hand
sides, the original 20000 × 20000 diagonal blocks of S-matrix and SB-matrix are shown and on
right hand sides the resulting permuted matrices are presented, both from the point of view of
their sparsity structure. Let us observe again the almost regular structure of SB-matrix.

Now we introduce some tests on S-matrix and SB-matrix. In each test, a stationary probability
distribution vector of matrix B is computed, where

B = 0.85G + 0.15E,

E is a matrix of ones divided by N and G is S-matrix in Tests 1 and 2 and it is SB-matrix in
Tests 3 and 4, respectively.

Test 1. In the first test we compare the rate of convergence of power method and the IAD
method, where the parameters of the IAD agorithm are t = 1, s = 1 and T corresponds to block
Jacobi iteration, i.e. T is the product of the inverse of the block diagonal of I − B and the
block nondiagonal part of B. The diagonal blocks correspond to the aggregation groups. Due
to the extremely large scale of the problem, we perform the computations only with a part of
S-matrix. We adapted a diagonal square submatrix with indexes 20 001 − 40 000, i.e. we set
ones to the diagonal positions of empty columns, then we normalized the matrix. There are
100 aggregation groups (n = 100), each of the size 200. The errors of approximations of the
exact solution measured in 1-norm computed for S-matrix is shown in Figure 5. The red line
denotes the errors of power method and the red circles denote the errors of power method after
Tarjan’s permuting with the threshold 0. Let us see that Tarjan’s reordering has no effect on
the convergence of power method. The blue line means the errors obtained by the IAD method
and the blue circles denote the errors of the IAD method preprocessed by Tarjan’s permuting.

Test 2. The same computation as in Test 1 is performed, but the number of smoothing steps
is 5, t = 5. Resulting errors are displayed on Figure 6. Here the error of power method is
displayed after each five steps, in order the comparison to IAD was more realistic. The coloring
corresponds to the Test 1.

Test 3. The same computation as in Test 1 is done for SB-matrix, see Figure 7.

Test 4. Finally, in this test five steps of smoothing is done in each IAD iteration for SB-matrix.
The other items are identical to Test 2. The resulting errors are shown on Figure 8.

7 Conclusion

We show an efficient iterative method for computing a stationary probability vector of a sto-
chastic matrix suitable for solving large-scale problems. We show that in the case of computing
PageRank, some properties of the corresponding stochastic matrix can be exploited for obtain-
ing faster convergence. This is the sparsity of matrix G. The Tarjan’s algorithm can be used
to reorder the set of events (pages) in a more appropriate way. For such data the IAD method
can converge significantly faster than power method and also than unpreprocessed IAD method,
see [6, 10] for more detailed analysis.
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Figure 1: Sparsity structure of S-matrix. The whole matrix (resolution is not fine enough) and
a diagonal submatrix with indices 1 − 10 000.

Figure 2: Sparsity structure of SB-matrix. The whole matrix and a diagonal submatrix with
indices 1 − 10 000.
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Figure 3: Tarjan’s permuting (right) of a diagonal 20 000 × 20 000 submatrix (left) of the S-
matrix.
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Figure 4: Tarjan’s permuting (right) of a diagonal 20 000 × 20 000 submatrix (left) of the SB-
matrix.
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Figure 5: Graphical plot of the errors for Test 1 - 20000×20000 submatrix of S-matrix, s = t = 1,
n = 100. Red line - power method, blue line - IAD method. Red circles - power method after
Tarjan’s reordering, blue circles - IAD method after Tarjan’s reordering.
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Figure 6: Graphical plot of the errors for Test 2 - 20000 × 20000 submatrix of S-matrix, s = 1,
t = 5, n = 100. Red line - power method, blue line - IAD method. Red circles - power method
after Tarjan’s reordering, blue circles - IAD method after Tarjan’s reordering.
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Figure 7: Graphical plot of the errors for Test 3 - 20000 × 20000 submatrix of SB-matrix,
s = t = 1, n = 100. Red line - power method, blue line - IAD method. Red circles - power
method after Tarjan’s reordering, blue circles - IAD method after Tarjan’s reordering.
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Figure 8: Graphical plot of the errors for Test 4 - 20000× 20000 submatrix of SB-matrix, s = 1,
t = 5, n = 100. Red line - power method, blue line - IAD method. Red circles - power method
after Tarjan’s reordering, blue circles - IAD method after Tarjan’s reordering.
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