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Abstract

The distributed parameters systems can be described by linear two-dimensional
(dependent on two spatial directions) parabolic partial differential equations.
Using the finite difference method a distributed parameters system can be trans-
formed to a linear discrete state space model. The controller design based on
this description is complicated because of the large dimension of the model. The-
refore, a model reduction method has to be used. We transform the state space
model to the balanced realization of the system and show that the state vector
of the model can be expressed as the series of columns of the transformation
matrix. These columns can be imaged as base vectors of the state space.

1 Introduction

There are many industrial processes that have distributed parameters behaviour. Consequently,
these processes cannot be modelled by lumped inputs and/or lumped outputs models for correct
representation.

This paper deals with two-dimensional dynamic processes (systems with parameters de-
pendent on two spatial directions) that can be described by lumped inputs and distributed
output models. These models can be mathematically described by partial differential equations
(PDE) [5]. Unlike ordinary differential equations, the PDEs contain, in addition, derivatives
with respect to spatial directions. Consequently, the partial differential equations lead to more
accurate models but their complexity is larger.

The dynamic behaviour of the distributed parameters system, which is described by
the PDE, can be approximately described by a finite-dimensional model, for example, by using
the finite difference method [1]. Then the ordinary differential equation model with large di-
mension is obtained and can be used for a finite-dimensional controller design. Unfortunately,
for online solving of an optimization problem, e.g. the model predictive control approach [6, 2],
the large model dimension introduces a problem for the control design. Therefore, a model
reduction method has to be used.

Partial differential equations are usually solved by base functions. This approach is based
on that the solution of the PDEs can be expressed as series of the base functions. This paper
presents similar methodology. The discrete state space description of a distributed parameters
system is transformed to the balanced realization [8]. Then the system state can be expressed as
the product of the transformation matrix and the balanced state. We can imagine the columns
of the transformation matrix as base vectors to which the system state can be expanded. Then
using only the first few base vectors corresponds to the truncation of states with smaller influence
on the input/output behaviour of the system.

The paper is organized as follows. In section 2, the distributed parameters model for the fi-
nite controller design is developed. In section 3, the balanced truncation method is described.
In section 4, the relationship between the balanced realization and the system state expansion
to an orthonormal base vectors is developed. In section 5, this approach is demonstrated on
a heat transfer process.



2 Distributed Parameter Process Description

In this section, the model of a heat transfer process described by a linear two-dimensional pa-
rabolic PDE [5] is developed for a finite-dimensional controller design. At first, the stationary
PDE is transformed to a linear equation system using the finite difference approximation [1].
Then the implicit scheme [1] and this equation system are used for the transformation of the evo-
lutionary PDE to a linear dynamic discrete system.

2.1 Stationary Partial Differential Equation

For the surface thermal conductivity λ [W/K] independent on the temperature Θ [K] and
a surface heat source f [W/m2], the heat transfer process in the stationary case can be described
by a parabolic PDE

−λ

(
∂2Θ(x, y)

∂ x2
+

∂2Θ(x, y)
∂ y2

)
= −λ∆Θ(x, y) = f(x, y), (1)

where ∆ is the Laplace operator. The unknown temperature Θ must satisfy equation (1) on
an open set Ω = (0, L1) × (0, L2) and boundary condition on ∂Ω (∂Ω means the boundary of
set Ω).

In this paper, the boundary condition which specifies the temperature gradient on the boun-
dary ∂Ω is described by the following statement

−λ
∂Θ(x, y)

∂ n
= α

(
Θ(x, y)−Θs(x, y)

)
, (2)

where n is the unit normal vector, α [W/(mK)] is an external heat transfer coefficient and Θs is
the surrounding temperature. Note that equation (2) is known as Newton (or the third kind)
boundary condition [5].
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Figure 1: The mesh on the set Ω

For the transformation of PDE (1) with boundary condition (2) to the finite dimensio-
nal model, the set Ω is covered by an imaginary mesh so that the values of the mesh points
satisfy ΘΘΘ i,j = Θ(i δx, j δy) on the closed set Ω , F i,j = f(i δx, j δy) on the open set Ω and
F i,j = ΘΘΘs(i δx, j δy) on the set ∂Ω , where δx and δy are the grid sizes of the imaginary
mesh and i, j are row and column indices, respectively (see Figure 1). Matrix ΘΘΘ is the matrix
of the temperature values in the mesh points and matrix F represents the heat source f and
the surrounding temperature Θs.



When we define vectors

θθθ=




ΘΘΘ( : , 0)
ΘΘΘ( : , 1)

...
ΘΘΘ( : , N2−1)
ΘΘΘ( : , N2)




, f =




F ( : , 0)
F ( : , 1)

...
F ( : , N2−1)

F ( : , N2)




, (3)

with indices l = j(N1 + 1) + i,

where ΘΘΘ(:, 0) means the zero column of the matrix ΘΘΘ , ΘΘΘ(:,1) the first column and so on,
partial differential equation (1) with Newton boundary condition equations (2) can be written
in compact form

Pθθθ = f . (4)

More details were described in [7].

2.2 Evolutionary Partial Differential Equation

In the non stationary case, PDE (1) can be written as

ρ c0
dΘ(x, y, t)

dt
− λ∆Θ(x, y, t) = f(x, y, t), (5)

where ρ [kg/m2] is the surface density of the medium and c0 [Ws/kgK] is its thermal capacity.
In this case, the unknown temperature profile Θ(x, y, t), dependent on time t, must satisfy,
for an initial condition Θ(x, y, t0) = Θinit(x, y), equation (5) on the open set Ω and boundary
condition (2) on ∂Ω for all time horizon t ∈ 〈t0, tend〉.

Using equation (4) and the implicit discretization scheme [1] with a sampling period δt,
evolutionary PDE (5) with Newton boundary condition (2) can be approximated as

θθθ(k + 1) = Mθθθ(k)+Nf(k), θθθ(k0) = θθθinit, (6)

M =
(

I+
δt

ρ c0
P

)−1

, N =
(

I+
δt

ρ c0
P

)−1

· δt

ρ c0
,

where I is the identity matrix with the corresponding dimension.

3 Model Reduction Method

The accuracy of model (6) increases with decreasing grid sizes δx and δy. Unfortunately, for
the advanced controller design, for example the predictive controller, a low dimension model is
needed. In this section, one reduction method is shortly described.

3.1 Model Reduction by the Balanced Truncation Method

There are infinitely many different state space realizations for a given transfer function. But
some realizations are more useful in control design. One of these realizations is the balanced
realization which gives balanced Gramians for controllability Wc and observability Wo [8]. In
addition, these Gramians are equal to the diagonal matrix ΣΣΣ

Wc = Wo = ΣΣΣ = diag (σ1, σ2, . . . , σn).



Note that the decreasingly ordered numbers,

σ1 ≥ σ2 ≥ . . . ≥ σn ≥ 0,

are called the Hankel singular values of the system.

We suppose σr À σr+1 for some r ∈ 〈1;n). Then the balanced realization implies that
the states corresponding to the singular values of σr+1, . . . , σn are less controllable and observable
than the states corresponding to σ1, . . . , σr. The states corresponding to the singular values of
σr+1, . . . , σn have smaller influence on the input/output behaviour of the system. Therefore,
truncating those ”less controllable and observable” states will not lose much information about
the system input/output behaviour and the dimension of the model can be significantly reduced.

3.2 Transformation to the Balanced Realization

Model (6) can be expressed as

x(k+1) = Ax(k) + Bu(k) + Ez(k), x(k0)=x0,

y(k) = Cx(k) + Du(k), (7)

where x = θθθ is a state vector of the model (temperature profile), y is its output vector (tempe-
rature measured in several points on the set Ω), u is its input vector (manipulated variable), z
represents the surrounding temperature profile (measurable disturbance) and A, B, C, D, E
are state matrices.

Gramians for controllability W c and observability W o [4] of model (7) can be expressed by

Wc =
∞∑

i=0

Ai
[
B, E

] [
B, E

]T (
AT

)i
, (8)

Wo =
∞∑

i=0

(
AT

)i
CT C Ai. (9)

Model (7) can be transformed, by a matrix Q

x = Qv, (10)

to another realization

v(k+1) = Av(k) + Bu(k) + Ez(k), v(k0)=v0,

y(k) = Cv(k) + Du(k), (11)

where the matrices satisfy A = Q−1AQ, B = Q−1B, E = Q−1E, C = CQ, D = D. Note
that Gramians of the transformed realization (11) are equal to

Wc = Q−1Wc(Q−1)T, Wo = QT WoQ , (12)
=⇒ WcWo = Q−1WcWoQ . (13)

Now we have to find transformation matrix Q, such that realization (11) is the balanced
realization of the system. Since Gramians are symmetric positive definite matrices, we can factor
Gramian for observability as Wo = P T P , where matrix P is the Cholesky factor of matrix Wo.
Then equation (13) can be written as Q−1WcP

T PQ = ΣΣΣ 2. Using elementary rearrangement,
the equation can be obtained as

Q−1P−1PWcP
T PQ=

(
PQ

)−1
PWcP

T
(
PQ

)
=ΣΣΣ 2. (14)



Equation (14) means that PWcP
T is similar to ΣΣΣ 2 and is positive definite. Therefore, there

exists an orthonormal transformation matrix U (UT U = I), such that

PWcP
T = UΣΣΣ 2UT. (15)

From equations (12)a and (15), we can derive the formula for the transformation matrix

Q = P−1UΣΣΣ−1/2. (16)

Then model (11) is the balanced realization of model (7) and its Gramians for controllability
and observability are Wc = Wo = ΣΣΣ [8].

So if model (7) is a minimal realization and matrix A is stable, the transformation mat-
rix Q can be obtained through the following procedure:

• compute the controllability and observability Gramians of model (7) Wc > 0, Wo > 0,

• find matrix P such that Wo = P T P ,

• diagonalize PWcP
T = UΣΣΣ 2UT by using the singular value decomposition [3],

• let the Q = P−1UΣΣΣ−1/2.

4 Base Vectors

Considering the Hankel singular values are decreasingly ordered, the first state of state vector v
has the biggest influence on the input/output behaviour of the system, the second state has
less influence and so on. As it has been said in section 3, we can truncate states corresponding
to small singular values σi and the model keeps enough information about the input/output
behaviour of the system. In this section, we show that the system state vector can be expressed
in an orthonormal base. Then using only the first r orthonormal base vectors (for expression of
the system state vector) corresponds to the truncation of the states with smaller influence on
the input/output behaviour of the system.

4.1 Decomposition of the System State Vector to the Balanced Base Vectors

Equation (10) can be rewritten as

x = Qv =
n∑

i=1

vi qi , (17)

where vi are the elements of state vector v in balanced realization (11) and vectors qi are the
columns of matrix Q =

[
q1, q2, . . . , qn

]
. Since the transformation matrix Q is not singular,

the vectors qi are linearly independent. So equation (17) means that state vector x can be
expressed as the series of base vectors qi that are multiplied by weighted coefficients vi.

Note that if we want to truncate states corresponding to the singular values of σr+1, . . . , σn,
we express state vector x only by the first r base vectors qi

x =
r∑

i=1

vi qi .



4.2 Orthonormal Base Vectors

The base vectors qi can be transformed to an orthonormal base by using the Gram-Schmidt
orthonormalization. We decompose the matrix Q such that Q = OR, where R is an upper
triangular matrix and O is an orthonormal matrix (OT O = I). Then equation (17) can be
rewritten as

x = Qv = ORv = Oṽ =
n∑

i=1

ṽi oi , (18)

where ṽ = Rv and vectors oi are the columns of matrix O =
[
o1, o2, . . . , on

]
. So equation (18)

means that state vector x can be expressed by the orthonormal base vectors oi.

5 DEMONSTRATION EXAMPLE

Consider a heat transfer process in a furnace where L1 = L2 = 0.9 m described by equation (5)
with constants λ = 51 W/K, ρ = 2500 kg/m2, c0 = 1259 Ws/(kg K) and α = 1.14 W/(mK).
The grid sizes are δx = δy = 0.02 m and the sampling period is δt = 300 s. The system has five
lumped inputs (manipulated variables, see Figure 2) and the surface temperature is measured
in 64 points which are uniformly distributed over the area Ω , see Figure 3b.
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Figure 2: The heat source distribution f(x, y)
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Figure 3: (a) The steady-state temperature distribution Θ(x, y); (b) The system output y
(the temperature in 64 measurement points)
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Figure 4: The Hankel singular values of the system

Figure 3a presents the steady-state temperature distribution (system state) for the unit
step as input signal (see Figure 2) and the surrounding temperature Θs = 340 K. Figure 3b
shows the system output y – temperature in 64 measurement points. Figure 4 shows the Hankel
singular values of the system.

Figure 5a presents the system output based on the first system state (in balanced rea-
lization), Figure 5b shows the base function corresponding to the first base vector (17) and
Figure 5c shows the orthonormal base function corresponding to the first orthonormal base vec-
tor (18). Figure 6a presents the system output based on the first two system states and Figures 6b
and 6c show the base function corresponding to the second base vector and the orthonormal
base function corresponding to the second orthonormal base vector, respectively.

From Figures 5-14, it follows that the system state vector can be expressed in the series of
the base functions (the columns of the transformation matrix) or the orthonormal base function,
respectively. This methodology is similar to the analytical solution of PDEs based on the non-
discrete base functions that are usually nonlinear even if the PDEs are linear.
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Figure 5: (a) Steady-state system output y based on the first state; (b) The first base
function (q1); (c) The first orthonormal base function (o1)

0
0.2

0.4
0.6

0.8

−0.8
−0.6

−0.4
−0.2

0
1105

1110

1115

1120

1125

x

System output

y

Θ

0
0.2

0.4
0.6

0.8

−0.8
−0.6

−0.4
−0.2

0
−0.2

−0.1

0

0.1

0.2

x

Base vector q
2

y

Θ

0
0.2

0.4
0.6

0.8

−0.8
−0.6

−0.4
−0.2

0
−0.1

−0.05

0

0.05

0.1

x

Orthonormal base vector o
2

y

Θ

Figure 6: (a) Steady-state system output y based on the first two states; (b) The second base
function (q2; (c) The second orthonormal base function (o2)
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Figure 7: (a) Steady-state system output y based on the first three states; (b) The third base
function (q3); (c) The third orthonormal base function (o3)
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Figure 8: (a) Steady-state system output y based on the first four states; (b) The fourth base
function (q4); (c) The fourth orthonormal base function (o4)
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Figure 9: (a) Steady-state system output y based on the first five states; (b) The fifth base
function (q5); (c) The fifth orthonormal base function (o5)
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Figure 10: (a) Steady-state system output y based on the first six states; (b) The sixth base
function (q6); (c) The sixth orthonormal base function (o6)
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Figure 11: (a) Steady-state system output y based on the first seven states; (b) The seventh
base function (q7); (c) The seventh orthonormal base function (o7)
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Figure 12: (a) Steady-state system output y based on the first eight states; (b) The eighth base
function (q8); (c) The eighth orthonormal base function (o8)
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Figure 13: (a) Steady-state system output y based on the first nine states; (b) The ninth base
function (q9); (c) The ninth orthonormal base function (o9)
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Figure 14: (a) Steady-state system output y based on the first five states; (b) The tenth base
function (q10); (c) The tenth orthonormal base function (o10)



6 CONCLUSION

The state space model of the distributed parameters system described by the linear two-dimensi-
onal parabolic partial differential equation and the model reduction by the balanced truncation
method are described.

The connection of the model reduction by the balanced truncation method and the solu-
tion of the partial differential equations based on the base functions is developed. The result
is demonstrated on the heat transfer process example. You can observe from the figures that
the base functions qi and the orthonormal base functions oi, respectively, are similar to the Fou-
rier decomposition of a signal (the first harmonic, the second harmonic, etc.)
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