
RECONFIGURABLE IMAGE PROCESSING
ARCHITECTURE WITH SIMULINK PROTOTYPING

SUPPORT

J. Schier, B. Kovář

Ústav teorie informace a automatizace AV ČR, Praha

P.Zemč́ık, A. Herout, V. Beran

Ústav poč́ıtačové grafiky a multimédíı,
Fakulta informačńıch technologíı
Vysoké učeńı technické v Brně

Abstract

A novel concept of an embedded image processing architecture is presented in the
paper. This architecture is based on an interconnection of a programmable logi-
cal chip (FPGA) with a digital signal processor (DSP). Both these devices have
characterics that complement well each other for broad-class of data-intensive
image- and video-processing tasks.

For efficient utilization of such device, a multi-level configuration system is
needed. At the low level, it has to provide means for hardware setup and run-
time re/configuration of the device. At high level, tools for rapid application
development are required.

The paper describes both the hardware and software architecture of the sys-
tem and the configuration methods utilized for application development for the
proposed architecture.

1 Introduction

Image processing is, in general, characterized by very high computational demands. Although
it can be handled by ”standard” computers, such solution is not viable for an embedded system,
where dimensions of the computer system, power consumption or data throughput are of concern.
For these reasons, specialized hardware solutions based on a digital signal processor (DSP) or a
field programmable gate array (FPGA) are usually used in embedded systems.

The architecture of a DSP processor is tuned for fast multiply and accumulate opera-
tions (MACs). In the same time, the DSP is characterized by low energy consumption, high
throughput I/O subsystem and some degree of parallel processing.

The architecture of FPGA, on the other hand, is designed with fine-grain parallelism,
which makes it well suited for masivelly parallel algorithms. The weak points of FPGA are (with
exceptions) relatively small capacity of the on-chip memory and relatively narrow troughput of
memory interfaces, lack of wide-word processing units, and high cost of performing complex
numerical operations, such as division, square root, logarithmic, exponential, and goniometrical
functions (in smaller devices, these operations cannot be implemented at all). Also, complex
memory controllers and addressing units are difficult and expensive to implement.

In the recent years, a combination of a DSP with FPGA for advanced image rendering tasks
has been studied extensively [1, 2]. However, development of applications for such combination
is rather difficult, since it is needed to distribute the computational tasks between the processors
and programmable logic; therefore, the application development support tools and methodology
are probably as important as the potential of the architecture combining the processors and
programmable logic. This paper attempts to address both of the issues.



Figure 1: PCI carrier with computational modules

FPGA

Host interfaces

Bus B
16-bit

DRAM

Bus A
64-bit

Motherboard

PC

INT (3)DSP
CPU RAM

BUS controller

DMA controller

Figure 2: Block scheme of the system

2 Example of an image processing architecture

In this section, an example of an image processing architecture, produced by Camea s.r.o., which
is designed specifically for embedded high performance computations, will be presented. It con-
sists of computational modules, carried by a PCI carrier-board that provides also the necessary
interconnections, connection to the host computer and interfaces for optional application-specific
modules (see Figure 1). One such PCI board can hold up to four modules. The modules contain
high performance Texas Instruments C64xx series DSP and Xilinx Virtex II FPGAs.

The FPGA device relies on the data transfers and data storage provided by the DSP. It
is connected to the peripheral bus interface of the DSP and is accessible as a ”set of registers”
in the memory space of DSP: the C64xx series of DSPs have two external buses dedicated for
memory and peripheral interface. The FPGA is connected to the peripheral bus so that it does
not affect the memory bandwidth of the system and the DSP’s raw computational speed. The
data delivery to and from the FPGA is accomplished through the DMA controllers built in the
DSP (see Figure 2).



VHDL/C
functions

DSP
runtime

FPGA
config

Perl 6

Parrot

Simulink

Figure 3: Design flow of the system

The basic setup of the motherboard and of the modules is done through a set of functions
that are available in UNIX (Linux) and Windows version. These functions provide means of
PCI configuration, FPGA design upload, DSP software upload, etc. While these functions are
specialized for the motherboard, the FPGA designs and DPS software they upload are generic
and can be used in any configuration of the core computational modules.

3 Application Design

The idea of application development in our project is to shield the designer from the complexity
of specialized hardware development tools and to provide him with an environment similar to
what he is used to in standard programming. The algorithms are encoded as single or multi-
threaded pieces of software using some kind of a procedural notation. The block diagram of the
software development modules relationship is shown in Figure 3.

An application is set-up in the form of a Perl configuration script or, alternatively, in Parrot
”assembly language-like” intermediate code which calls/loads library functions and modules.
The Perl/Parrot code is compiled into a binary (byte-stream) form that is then executed in the
DSP/FPGA system. Hence, while the application development is performed in Perl, the critical
functions are written in C and/or in VHDL.

Perl was selected as the language of choice for its open source nature, rather wide pen-
etration, and also because an efficient intermediate ”assembly language like” code is available
(Parrot, available in Perl version 6) and the runtime engine for this code is efficient. Finally, it
is possible to modify the engine in order to incorporate possible extensions of functionality in
image processing, multithread application synchronization, etc.

4 Rapid prototyping tools

For application prototyping, a blockset is being developed for use with Simulink. The blocks that
it will contain will correspond with the counterparts in the C/VHDL library. An appropriate tool
for automatic parsing of the Simulink design into a configuration file is being investigated (see
Figure 4). The standard option for Simulink the Target Language Compiler. While primarily
targetted into the C-code, it can be configured to generate also other output. However, since the
Simulink model is stored in a text file, virtually any general-purpose parser, such as lex/yacc,
can be used. The advantage of the later solution may be that lower cost (no additional license



Simulink
description

Config
script

FPGA lib

DSP lib

Library

Parser

Figure 4: Parsing from Simulink to a configuration file

is required) while it may be sufficient for the purpose of preparing the configuration file.

5 Ackowledgement

This work has been supported by the Grant Agency of the Academy of Sciences of the Czech
Republic under Project 1ET400750408.

References

[1] A. Herout, P. Zemč́ık, V. Beran, and J. Kadlec. Image and video processing software frame-
work for fast application development. In AMI/PASCAL/IM2/M4 workshop, Martigny,
2004.

[2] P. Tǐsnovský, A. Herout, and P. Zemč́ık. Cache-based parallel particle rendering engine.
ElectronicsLetters.com, 2003(1), 2003. ISSN 1213-161X.

Jan Schier
Ústav teorie informace a automatizace AV ČR
Pod vodárenskou věž́ı 4
182 08 Praha 8
Tel. +420-2 6605 2470
schier@utia.cas.cz

Pavel Zemč́ık
Ústav poč́ıtačové grafiky a multimédíı
Fakulta informačńıch technologíı
Vysoké učeńı technické v Brně
Božetěchova 2
612 66 Brno
Tel. +420 5 4114 1217
zemcik@fit.vutbr.cz


