
ROBUST ALGORITHM FOR ESTIMATION OF
PARAMETERS IN NON-LINEAR REGRESSION MODELS

J. Tvrd́ık

University of Ostrava

Abstract

The paper deals with algorithms for estimation of non-linear regression parame-
ters. Stochastic population-based algorithm with competition was implemented
and compared with standard gradient algorithm commonly used for least-squares
estimates. The results show that this stochastic algorithm found the global min-
imum in most tasks where gradient algorithm fails. Such population-based algo-
rithms can be used as a tool for estimation of non-linear regression parameters,
especially in tasks of higher difficulty level or in tasks when suitable starting
values for gradient method are not available.

1 Introduction

In non-linear regression model, we suppose that elements of random vector Y are expressed as
follows

Yi = f(xi,β) + εi, i = 1, 2, . . . , n, (1)

where xT
i = (x1, x2, . . . , xk) is i-th row of regressors matrix X, β = (β1, β2, . . . , βd) is vector of

parameters, f is a given function non-linear in parameters, and εi’s are independent identically
distributed random variables with zero means. Estimation of parameters by the least squares
method means to find such estimates of β that minimize the residual sum of squares Q(β) given
by the following equation

Q(β) =
n∑

i=1

[Yi − f(xi,β)]2 . (2)

The estimation of β is the global optimization problem because the objective function Q(β) need
not be unimodal. That is why iterative deterministic algorithms (like Levenberg-Marquardt or
Gauss-Newton) used in standard statistical procedures often fail in finding the right solution of
the problem. Several statistical packages (SPSS, S-Plus, NCSS, SYSTAT) [12] were tested on
higher-level-difficulty tasks collected by NIST[8]. Either failure or significant disagreement with
certified values were found in about one half tasks. Iterative deterministic can stop at a local
minimum different from the global one in many tasks. Moreover, these algorithms need starting
values of parameters and the choice of starting values has substantial influence on convergence of
iteration process. Classical evolutionary algorithms [2] can be applied to the global optimization
problems, but they are sensitive to the tuning of their controlling parameters. Statisticians and
data analysts usually are not experts in such fine art of tuning. Statisticians require a robust
algorithm giving reliable estimates at reasonable time consumption without changing default
values of its controlling parameters. This paper attempts to propose such an algorithm.

2 Controlled Random Search with Competing Heuristics

Let us consider continuous global optimization problem with box constraints, i.e. for a given ob-
jective function f : D → R, D ⊂ Rd, the point x∗ is to be found such that x∗ = arg minx∈D f(x).
The point x∗ is called the global minimum, D is the search space defined as D =

∏d
i=1[ai, bi],

ai < bi, i = 1, 2, . . . , d and the objective function is computable, i.e. there is an efficient
algorithm capable to evaluate f(x) with sufficient accuracy in any point x ∈ D.

Controlled random search (CRS) is a simple stochastic algorithm searching for the global
minimum in problems defined above. CRS algorithm was proposed by Price [7] in 1977. There
are several modifications of the CRS algorithm which were successfully used in solving the global
optimization problems [1]. The CRS algorithm can be written in pseudo-code as follows:

1 generate P (population of N points in D at random);
2 find xmax (the point in P with the highest function value);
3 repeat
4 generate a new trial point y ∈ D by a heuristic;
5 if f(y) < f(xmax) then
6 xmax := y;
7 find new xmax;
8 endif
9 until stopping condition;

A heuristic used at line 4 is any non-deterministic rule generating a new trial point y ∈ D. Price
used the reflection in simplex known described by Nelder and Mead [6]. The simplex is d + 1
point from P randomly chosen at each step. However, there are many different heuristics that
can be used. Moreover, it is not necessary to use the same heuristic within the whole search
process, several heuristics can alternate. Let us have h heuristics at our disposal and at each
iteration step a heuristic is chosen at random with the probability qi, i = 1, 2, . . . , h.

The probabilities are changing according to the successfulness of heuristics in preceding
steps of searching process. The heuristic is successful in the current step of evolutionary process
if it generates such a trial point y that f(y) < fmax, fmax = f(xmax). Probability qi can be
simply evaluated by frequency of success. Other way is the weighting of success by

wi =
fmax −max(f(y), fmin)

fmax − fmin
. (3)

Thus wi ∈ (0, 1] and probability qi is evaluated as

qi =
Wi + w0∑h

j=1(Wj + w0)
, (4)

where Wi is sum of wi in previous search and w0 > 0 is an input parameter of the algorithm.
In order to avoid the degeneration of evolutionary process the current values of qi are reset to
their starting values (qi = 1/h) when any probability qi decreases below a given limit δ > 0.
The CRS algorithm with competing heuristics belongs to the class of evolutionary algorithms
described in [10] and [11].

Four competing heuristics were used in the implementation of the CRS algorithm for non-
linear regression parameter estimate. Three of them are based on randomized reflection in the
simplex S (d + 1 points chosen from P) proposed in [3]. A new trial point y is generated from
the simplex by the relation

y = g + U(g − xH). (5)

where xH = arg maxx∈S f(x) and g is the centroid of remaining d points of the simplex S. The
multiplication factor U is a random variable distributed uniformly in [s, α − s), where α > 0
and s are input parameters, 0 < s < α/2. All the d + 1 points of simplex are chosen at random
from P in two heuristics, the heuristic denoted REFL1 uses α = 2, and s = 0.5, the heuristic
denoted REFL25 uses α = 5, and s = 1.5.

In the third heuristic denoted REFLB one point of simplex is the point of P with the
minimal function value and remaining d points of simplex S are chosen at random from remaining
points of P . Input parameters of the heuristic are set α = 2 and s = 0.5.

The fourth competing heuristic is based on differential evolution [9]. A point u is generated
according to

u = r1 + F (r2 − r3) , (6)

where r1, r2 and r3 are three distinct points taken randomly from P and F > 0 is an input
parameter. The elements yj , j = 1, 2. . . . , d of trial point y are built up by the crossover of
randomly taken x (not coinciding with the current r1, r2, and r3) and u using the following
rule:

yj =

{
uj if Uj ≤ C or j = l

xj if Uj > C and j 6= l ,
(7)

where l is a randomly chosen integer from {1, 2, . . . , d}, U1, U2, . . . , Ud are independent random
variables uniformly distributed in [0, 1), and C ∈ [0, 1] is an input parameter influencing the
number of elements to be exchanged by crossover. Ali and Törn [1] suggested to adapt the value
of the scaling factor F within searching process according to the equation

F =

{
max(Fmin, 1− |fmax

fmin
|) if |fmax

fmin
| < 1

max(Fmin, 1− | fmin
fmax

|) otherwise,
(8)

where fmin, fmax are respectively the minimum and maximum function values in the population
and Fmin is an input parameter ensuring F ∈ [Fmin, 1). The heuristic which uses Eq.(8) for
evaluation of F with Fmin = 0.4 and C = 0.9 is denoted DERADP in the following text.

3 Numerical Experiments

One criterion for judging the accuracy of software output is comparison with ”certified values”
from sources that are known to be reliable. The NIST collection of datasets [8] collection contains
27 non-linear regression datasets (tasks) ordered by level of difficulty (lower – 8 tasks, average
– 11 tasks, and higher – 8 tasks). The certified results are reported to 11 decimal places for
each dataset. Numerical tests were carried out with all the NIST non-linear regression datasets.
The results obtained by tested algorithms were evaluated by number of duplicated digits of the
certified results. The number of duplicated digits λ can be calculated via log relative error [5]
as

λ =

0 if |m−c|

|c| ≥ 1

11 if |m−c|
|c| < 1× 10−11

− log10

(
|m−c|
|c|

)
otherwise ,

(9)

where c denotes the certified value and m denotes the estimated value. According to [8], except
in cases where the certified value is essentially zero (for example, as occurs for the three Lanczos
problems), a good non-linear least squares procedure should be able to duplicate the certified
results to at least 4 or 5 digits. Two values of the number of duplicated digits are reported in
our results, λQ is the agreement of residual sum of squares, see Eq. (2), and λβ is the average
agreement of estimated parameters (β1, β2, . . . , βd). As it is seen later, producing correct results
on all datasets of higher difficulty does not imply that the procedure will pass all datasets of
average or even lower difficulty. Similarly, producing correct results for all datasets in this
collection does not imply that the procedure will do the same for other particular dataset.

Two algorithms for estimation of parameters were compared in our numerical experiments.
One of them is a modification of Levenberg-Marquardt algorithm implemented in nlinfit pro-
cedure of Statistical Toolbox [4]. Each dataset contains two starting d-tuples of parameters
values for iterative deterministic algorithms of Levenberg-Marquardt type. The results obtained
with these starting values are marked Start1 and Start2 in the following text. Especially values
in Start2 are very close to the certified values.

Controlling parameters of nlinfit were set to their default values, the calling statement in
Matlab was

[beta,r,J]=nlinfit(X,y_obs,task_name,beta0);

The second algorithm is the CRS with four competing heuristics (CRS4CH) described
in section 2. It is also implemented in Matlab, its source code is supplied in Appendix A.
Because of its stochastic nature (initial population is chosen at random in D, new trial points
are also generated non-deterministically), it must be tested in repeated runs. One hundred of
repetitions were carried out for each task. Except λQ and λβ two other variables are reported.
Time consumption is expressed by average number (ne) of objective function evaluation needed
to reach the stopping condition. The reliability RP of the search is measured as percentage of
successful searches in which λQ exceeds a given value. The stopping condition was defined in
all the tasks as

R2
max −R2

min < 1× 10−12 , (10)

where R2
max and R2

min are the maximum and the minimum of the determination index in the
population P . The determination index R2 is defined by

R2 = 1− Q(β)∑n
i=1(Yi − Y)2

. (11)

The determination index R2 specifies the part of total variability of Y which is explained by
regression model.

Definitions of search spaces D for the test tasks are given in Appendix B. The tuning
parameters of the CRS algorithm with competing heuristics were the same for all the tasks.
This setting can be recommended as default for non-linear regression problems:

• population size, N = 5d2,
• parameter w0 used in Eq. 4, w0 = 0.5,
• limit value δ for the reset of probabilities qi to initial values, δ = 0.04

4 Results

Overall comparison of both algorithms is shown in Tables 1 to 3 ordered according to level of
difficulty. The results obtained by the nlinfit procedure can be accepted for all the tasks of
lower difficulty level while the CRS4CH failed partly in three tasks where either λQ or RP are
less than required – see Table 1. The CRS4CH was outperformed by nlinfit at lower level
of difficulty. In the case of medium level tasks (Table 2) the nlinfit crashed in the MGH17
task (error in nlinfit at line 201) but the CRS4CH worked well. Both algorithms were not
successful in Lanczos1. The CRS4CH did not achieve the required accuracy in other three tasks
(Gauss3, Hahn1, Lanczos2). Concerning the higher level difficulty Table 3, nlinfit crashed in
Boxbod task (error in nlinfit at line 201) and in three or even four tasks its performance was
not satisfactory in log relative errors of the objective function. On the other hand the CRS4CH
performed perfectly in seven tasks and its performance was almost perfect in the last task.

Table 1: Comparison of algorithms – low level of difficulty

nlinfit CRS4CH
Start1 Start2 λQ > 4 λQ > 0

task d 1−R2 λQ λβ λQ λβ λQ λβ ne RP RP
chwirut1 3 2.00E-02 10.8 9.0 10.6 8.9 11.0 6.3 3602 100 100
chwirut2 3 1.40E-02 11.0 9.1 11.0 9.2 11.0 6.1 3562 100 100
danwood 2 5.67E-04 11.0 10.2 11.0 9.9 10.3 6.7 1306 100 100
gauss1 8 3.04E-03 11.0 8.1 11.0 8.5 8.2 4.0 87177 80 80
gauss2 8 3.51E-03 10.6 8.3 10.6 8.5 1.8 1.1 71939 18 18
lanczos3 6 1.51E-09 10.6 8.1 10.6 8.1 3.1 0.8 80615 0 100
misra1a 2 1.84E-05 10.5 10.2 10.4 10.2 8.8 6.0 1807 100 100
misra1b 2 1.12E-05 11.0 10.2 11.0 10.2 8.5 6.1 1543 100 100

Table 2: Comparison of algorithms – medium level of difficulty

nlinfit CRS4CH
Start1 Start2 λQ > 4 λQ > 0

task d 1−R2 λQ λβ λQ λβ λQ λβ ne RP RP
enso 9 4.02E-01 8.4 4.9 8.1 4.7 11.0 5.3 107798 100 100
gauss3 8 3.10E-03 11.0 7.7 11.0 7.7 0.5 0.6 71442 5 5
hahn1 7 1.96E-04 10.6 7.0 10.6 6.0 1.4 1.3 44460 15 15
kirby2 5 2.85E-05 11.0 7.3 10.2 6.6 8.5 5.4 17533 100 100
lanczos1 6 1.34E-26 1.9 10.7 1.9 10.7 0.0 0.8 78809 0 0
lanczos2 6 2.10E-12 10.0 8.7 9.9 8.5 0.3 1.4 78120 0 99
mgh17 5 4.74E-05 11.0 7.6 8.6 5.4 22443 100 100
misra1c 2 6.06E-06 11.0 8.2 11.0 8.2 8.2 6.2 1840 100 100
misra1d 2 8.34E-06 11.0 10.3 11.0 10.3 8.5 6.2 1767 100 100
nelson 3 6.98E-02 10.9 8.9 10.9 9.0 10.9 6.5 7566 100 100
roszman1 4 1.59E-03 11.0 6.4 11.0 6.5 10.4 5.9 10383 100 100

Table 3: Comparison of algorithms – higher level of difficulty

nlinfit CRS4CH
Start1 Start2 λQ > 4 λQ > 0

task d 1−R2 λQ λβ λQ λβ λQ λβ ne RP RP
bennett5 3 1.06E-05 2.0 1.3 2.1 1.4 7.2 4.0 56434 100 100
boxbod 2 1.20E-01 10.1 5.7 10.4 7.2 1023 100 100
eckerle4 3 2.94E-03 0.0 0.0 10.6 7.7 10.4 7.7 3141 100 100
mgh09 4 5.94E-03 3.9 2.1 8.2 4.3 10.9 5.9 17994 100 100
mgh10 3 6.20E-08 0.0 2.0 0.0 2.5 6.1 5.1 30022 100 100
rat42 3 1.73E-03 11.0 7.0 10.9 7.0 10.5 6.7 3567 100 100
rat43 4 8.16E-03 10.0 5.7 11.0 5.9 11.0 6.2 7772 100 100
thurber 7 4.92E-04 7.8 5.0 8.2 5.2 9.5 6.1 43939 99 99

5 Discussion

The results obtained by the CRS4CH does not seem to be reliable enough to claim the robustness
of the algorithm. But the results are not as bad as its smaller reliability on some lower- and
medium-level-difficulty tasks showed. The failure occurred mainly in Lanczos and Gauss tasks.
These tasks are based on generated data and the datasets are constructed as numerical trouble-
makers. In addition, Lanczos tasks have very small values of R2 (see Table 1 and 2). Such small
variability unexplained by model does not occur in tasks when experimental data are processed.
Thus, the significant frequency of failures was found in the case of Hahn1 dataset only. The
cause of this failure will be analyzed later.

Moreover, the results of repeated runs of the CRS4CH even if they are not successful
can be used as starting values of deterministic algorithms. In Table 4 there are the estimates
obtained by the nlinfit when the estimates from one hundred runs of the CRS4CH were used
as starting values. Three tuples of starting points were used: the centroid, minimal and maximal
corner of the d−dimensional box of solution found by the CRS4CH. As can be seen in Table 4,
at least one solution of each tasks is useful or even acceptable.

Table 4: Estimates from CRS4CH as starting values for nlinfit

average minimum maximum
task level λQ λβ λQ λβ λQ λβ

gauss1 lower 0.0 0.1 0.0 0.2 0.0 9.0
gauss2 lower 0.0 0.6 10.6 0.6 10.6 0.6
lanczos3 lower 10.6 1.1 4.7 1.1 4.8 1.1
gauss3 medium 0.0 0.6 11.0 0.6 0.0 0.3
hahn1 medium 0.0 0.0 0.0 0.0 10.6 3.3
lanczos1 medium 1.9 1.1 0.0 1.2 0.0 1.3
lanczos2 medium 10.3 1.1 0.3 1.2 1.0 1.2

The search process done by the CRS4CH can be characterized by some variables those
values are the results of adaptation of the algorithm. Their averages are presented in Table 5,
where the relative frequencies (per cent) are given in columns denoted by the names of heuristics.
The column rsucc contains relative frequency of successful function evaluations (if f(y) < fmax),
and rst1000 is the number of resets of probabilities per 1000 objective function evaluations. As
seen in Table 5, the frequencies of the use of heuristics differ among tasks, which shows the
ability of the algorithm to adapt the search to the task. However, there is a question if the
adaptability is sufficient. Comparison of two pairs of tasks (number of estimated parameters is
the same in each pair) is shown in Figure 1 and 2. As is seen in Figure 1, for two tasks with
different exploitation of heuristics within the search process the right values of estimates were
found with perfect reliability. In this case the algorithm approved its adaptability. On other
hand, we can see in Figure 2 that similar distribution of heuristics exploitation can give the
result very different in the reliability of estimates. In this case the adaptability of the algorithm
is not sufficient.

Table 5: Average values of search characteristics

Relative frequencies of the use of heuristics
level task REFL1 REFL25 REFLB DEADP rst1000 rsucc
lower chwirut1 26.1 2.4 36.6 34.9 16.2 52.3
lower chwirut2 26.4 2.5 37.1 34.0 16.5 52.3
lower danwood 42.5 5.0 2.1 50.4 20.2 43.2
lower gauss1 25.7 0.8 24.6 48.9 9.6 36.4
lower gauss2 34.0 0.8 37.2 28.0 13.3 40.1
lower lanczos3 37.7 1.2 46.2 14.9 12.3 33.8
lower misra1a 42.2 5.3 3.1 49.4 18.6 44.2
lower misra1b 44.1 6.7 3.2 46.0 17.6 41.6
medium enso 28.7 0.5 30.4 40.3 9.6 29.8
medium gauss3 28.9 0.7 31.0 39.4 11.5 37.0
medium hahn1 32.3 1.2 36.0 30.4 12.3 39.1
medium kirby2 33.8 1.1 38.2 26.9 13.3 38.6
medium lanczos1 37.9 1.2 46.2 14.8 11.9 32.7
medium lanczos2 38.1 1.2 46.0 14.8 12.1 33.2
medium mgh17 34.0 1.0 39.8 25.3 13.2 38.3
medium misra1c 46.5 7.4 3.8 42.2 15.3 45.2
medium misra1d 45.8 6.8 4.5 42.9 14.5 45.5
medium nelson 28.2 2.5 30.2 39.1 11.6 44.6
medium roszman1 29.4 1.3 34.1 35.2 15.9 41.4
higher bennett5 31.3 2.6 40.4 25.8 11.2 39.6
higher boxbod 31.5 4.0 4.7 59.7 21.9 50.1
higher eckerle4 22.7 1.7 27.8 47.8 18.8 50.3
higher mgh09 29.3 1.5 35.7 33.6 13.6 41.1
higher mgh10 58.5 1.5 23.2 16.8 7.4 47.7
higher rat42 25.1 2.0 31.9 41.1 15.9 44.2
higher rat43 27.8 1.0 33.3 37.8 15.9 41.3
higher thurber 38.0 0.7 41.0 20.4 11.9 35.7

Figure 1: Different distributions of heuristics exploitation - both performed well

Figure 2: Similar distributions of heuristics exploitation - performation different

Simple look at relationship of variables influencing the search process give us their cor-
relation matrix in Table 6. Correlation coefficients greater than 0.40 in absolute value are
emphasized. The most surprising is high positive correlation between ne and the frequency of
REFLB in spite of the fact that REFLB plays a role of local minimizer. It can be caused by more
frequent exploitation of REFLB in tasks of higher dimension of the search space. The significant
negative correlation between ne and rsucc is also surprising but the reason is likely the same as
above. Another look at the dependency of most important variables (i.e. reliability expressed

Table 6: Correlation matrix

d λQ ne REFL1 REFL25 REFLB DEADP rst1000 rsucc
d 1.000 -0.489 0.820 -0.189 -0.633 0.549 -0.352 -0.399 -0.642
λQ -0.489 1.000 -0.529 -0.160 0.216 -0.316 0.463 0.242 0.390
ne 0.820 -0.529 1.000 -0.047 -0.480 0.452 -0.391 -0.469 -0.730
REFL1 -0.189 -0.160 -0.047 1.000 0.210 -0.448 -0.401 -0.214 0.050
REFL25 -0.633 0.216 -0.480 0.210 1.000 -0.681 0.419 0.269 0.277
REFLB 0.549 -0.316 0.452 -0.448 -0.681 1.000 -0.632 -0.272 -0.379
DEADP -0.352 0.463 -0.391 -0.401 0.419 -0.632 1.000 0.451 0.341
rst1000 -0.399 0.242 -0.469 -0.214 0.269 -0.272 0.451 1.000 0.430
rsucc -0.642 0.390 -0.730 0.050 0.277 -0.379 0.341 0.430 1.000

by λQ and time consumption ne) can be seen in Table 7 where the results of linear regression
are shown. The regressors are selected by stepwise procedure among variables in Table 5. The
results of the regression indicate that both λQ and ne are influenced by the number of resets
(dependent on input parameter δ) and by the choice of heuristics to competition. The next
research of more reliable and less time consuming algorithm for non-linear parameter estimate
should go this way.

Table 7: Regression analysis

dependent: ne, R2 = 0.75 dependent: λ, R2 = 0.39
b(i) sb(i) T p b(i) sb(i) T p

Intercept 56491 3754.0 15.0 0.0000 Intercept 8.754 0.426 20.5 0.0000
d 9686 211.9 45.7 0.0000 d -1.047 0.037 -28.0 0.0000
REFL1 195 31.2 6.2 0.0000 DEADP 0.143 0.006 22.8 0.0000
relsucc -1611 66.0 -24.4 0.0000 REFL25 -0.428 0.038 -11.2 0.0000
rst1000 -542 75.3 -7.2 0.0000 REFLB 0.028 0.006 4.3 0.0000

rst1000 -0.082 0.013 -6.2 0.0000

6 Conclusions

The CRS4CH algorithm outperforms the nlinfit procedure in the tasks of higher difficulty, but
the presented version of the algorithm is not satisfactory successful in some task of medium- and
lower-difficulty. Next research of its behaviour is needed. In spite of this fact, the present version
of CRS4CH algorithm can serve as an alternative tool for estimation of parameters in non-linear
regression models. The implementation of the algorithm in Matlab is presented in Appendix
A and it is also available at author’s web site. Advantage of the algorithm is that it does not
need the specification of starting values like deterministic iterative algorithms commonly used
in non-linear parameter estimates.

References

[1] Ali, M.M., Törn, A.: Population set based global optimization algorithms: Some modifica-
tions and numerical studies, Computers and Operations Research 31 (2004) 1703 – 1725.

[2] Bäck, T.: Evolutionary Algorithms in Theory and Practice. Oxford University Press, New
York (1996)

[3] Křivý, I., Tvrd́ık, J.: The Controlled Random Search Algorithm in Optimizing Regression
Models. Comput. Statist. and Data Anal. 20 (1995) 229 – 234.

[4] MATLAB, version 7.1.0, The MathWorks, Inc. (2005).
[5] McCullough, B.D., Wilson, B.: On the accuracy of statistical procedures in Microsoft Excel

2003. Comput. Statist. and Data Anal. 49 (2005) 1244 – 1252.
[6] Nelder, J.A., Mead, R.: A Simplex Method for Function Minimization. Computer J. 7

(1964) 308 – 313.
[7] Price, W. L.: A Controlled Random Search Procedure for Global Optimization. Computer

J. 20 (1977) 367 – 370.
[8] Statistical Reference Datasets. Nonlinear regression. NIST Information Technology Labo-

ratory. http://www.itl.nist.gov/div898/strd/. December 1, 2001.
[9] Storn, R., Price, K.: Differential evolution - a Simple and Efficient Heuristic for Global

Optimization over Continuous Spaces. J. Global Optimization 11 (1997) 341 – 359.
[10] Tvrd́ık, J., Křivý, I., Mǐśık, L.: Evolutionary Algorithm with Competing Heuristics. In:

Ošmera, P. (ed.): MENDEL 2001, 7th International Conference on Soft Computing. Tech-
nical University, Brno (2001) 58 – 64.

[11] Tvrd́ık, J., Mǐśık, L., Křivý, I.: Competing Heuristics in Evolutionary Algorithms. In:
Sinčák, P. et al. (eds.): Intelligent Technologies – Theory and Applications. IOS Press,
Amsterdam (2002) 159 – 165.

[12] Tvrd́ık, J., Křivý, I.: Comparison of algorithms for nonlinear regression estimates. In:
Antoch, J. (ed.): COMPSTAT 2004. Physica-Verlag (2004) 1917 – 1924.

This work was supported by the grant 201/05/0284 of the Czech Grant Agency and by the
institutional research MSM 6198898701 solved in the Institute for Research and Applications of
Fuzzy Modeling, University of Ostrava.

Josef Tvrd́ık
Department of Computer Science, University of Ostrava
30. dubna 22, 701 03 Ostrava
tvrdik@osu.cz
www.albert.osu.cz/tvrdik

A Source Code in MATLAB

function [x_star, fn_star, R2, func_evals, rsuc, nrst, ri]=...
nlr_crs4ch(mod_name, y_obs, X, a, b, N, my_eps, max_evals, delta, w0, int_disp)

%
% competing heuristics for non-linear regression (simple version)
% Tvrdik, October 2004
% input parameters
% obligatory:
% mod_name non-lin model (M file)
% y_obs dependent (column vector)
% X matrix of regressors
% a, b row vectors, limits of search space, a < b (box constraints)
% N size of population
% my_eps small positive value for stopping criterion
% max_evals max. evals per one dimension of search space
% delta if any probability qi is less than delta, reset of qi
% w0 positive number (w0=0.5 recomended) for success evaluation
%
% facultative:
% int_disp positive integer, number of function evaluation for
% displaying current results
%
% output:
% x_star global minimum found by search
% (estimates of parameters)
%
% fn_star the minimal function value found by CRS4CH
% (residual sum of squares)
%
% R2 R squared, index of determination
%
% func_evals number of func_evals for reaching stopping condition
%
% rsuc relative frequency (per cent) of successful trial points y
%
% ri relative frequency (per cent) of success of each heuristic
% (row vector with 4 elements]
%
% nrst number of resets
%
h=4; % number of heuristics in competition
d=length(a);
% initialization
P=zeros(N,d);
for i=1:N

P(i,:)=a+(b-a).*rand(1,d);
end
for i=1:N

P(i,d+1)= rss(mod_name,P(i,1:d),y_obs,X);
end % 0-th generation initialized

[fmax, indmax]=max(P(:,d+1));
[fmin, indmin]=min(P(:,d+1));
func_evals=N; success=0; ni=zeros(1,h); nrst=0; wi=zeros(1,h)+w0;
tss=(y_obs-mean(y_obs))’*(y_obs-mean(y_obs));
tss_myeps=tss*my_eps;
while (fmax-fmin > tss_myeps) & (func_evals < d*max_evals) % main loop

[hh p_min]=roulete(wi);
if p_min<delta

wi=zeros(1,h)+w0;
nrst=nrst+1;

end %reset
switch hh % number of selected heuristic

case 1
y=refl_rwd(P,[2 0.5]);

case 2
y=refl_rwd(P,[5 1.5]);

case 3
y=refl_bestrwd(P, 2, 0.5, indmin, P(indmin,1:d));

case 4
y=decrs_radp(P,[0.4 0.9 fmin fmax]);

end
y=zrcad(y,a,b); % perturbation
fy=rss(mod_name,y,y_obs,X);
func_evals=func_evals+1;
if fy < fmax % trial point y is good for renewing population

P(indmax,:)= [y fy];
success=success+1;
ni(hh)=ni(hh)+1;
if fmax-fmin <= eps w=w0;
else w=(fmax-max([fy fmin]))/(fmax-fmin); % weight of increase, <= 1
end
wi(hh)=wi(hh)+w; % qi will be changed
[fmax, indmax]=max(P(:,d+1));
[fmin, indmin]=min(P(:,d+1));

end
if nargin==11 & mod(func_evals,int_disp)==0 disp(P(indmin,:)); end

end % main loop - end
x_star=P(indmin,1:d);
fn_star=fmin;
R2=1-fmin/tss;
rsuc=100*success/func_evals;
ri=100*ni/success;
%

function y=refl_rwd(P,alpha);
% randomized shifted - worst (with highest f) point of simplex is reflected
% see Tvrdik 2004
shift_d=alpha(2); % shift_d < alpha(1)
alpha=alpha(1);
N=length(P(:,1)); d=length(P(1,:))-1;
vyb=nahvyb(N,d+1); % simplex S chosen at random from P
S=P(vyb,:);
[x,indx]=max(S(:,d+1)); % worst point is reflected
x=S(indx,1:d);
S(indx,:)=[];
S(:,d+1)=[];
g=mean(S);
y=g+(g-x)*(shift_d +(alpha-2*shift_d)*rand(1));
% randomized shifted reflection
% expected value = alpha/2

% random sample, k of N without repetiotion
function nahv=nahvyb(N,k);
opora=1:N;
nahv=zeros(1,k);
for i=1:k

index=1+fix(rand(1)*length(opora));
nahv(i)=opora(index);
opora(index)=[];

end
%

function y=refl_bestrwd(P,alpha,shift_d, indmin, xmin);
% randomized, shifted - worst (with highest f) point of simplex is reflected
% centroid g computed also from xmin
% see Ali and Torn 2004
N=length(P(:,1)); d=length(P(1,:))-1;
vyb=nahvyb_expt(N,d,indmin); % d points chosen at random from P except indmin
S=P(vyb,:);
[x,indx]=max(S(:,d+1)); % worst point is reflected
x=S(indx,1:d);
S(indx,:)=[];
S(:,d+1)=[];
g=(xmin + sum(S))/d;
y=g+(g-x)*(shift_d +(alpha-2*shift_d)*rand(1)); % randomized reflection

% random sample, k of N without repetition,
% numbers given in vector expt are not included
%
function vyb=nahvyb_expt(N,k,expt);
opora=1:N;
if nargin==3 opora(expt)=[]; end
vyb=zeros(1,k);
for i=1:k

index=1+fix(rand(1)*length(opora));
vyb(i)=opora(index);
opora(index)=[];

end

% heuristic - de_rand binomial
% F is adapted, see Ali and Torn 2004
function y=decrs_radp(P,vecpar);
Fmin=vecpar(1); CR=vecpar(2); fmin=vecpar(3); fmax=vecpar(4);
N=length(P(:,1)); d=length(P(1,:))-1;
vyb=nahvyb(N,4); % four random points
r1=P(vyb(1),1:d);
r2=P(vyb(2),1:d);
r3=P(vyb(3),1:d);
y=P(vyb(4),1:d);
pom1=Fmin; pom2=1; pom3=1;
if abs(fmin)>0 pom2=abs(fmax/fmin); end
if pom2<1 pom1=1-pom2;
elseif abs(fmax)>0 pom1=1-abs(fmin/fmax);
end
F=max([Fmin, pom1]);
v=r1+F*(r2-r3);
change=find(rand(1,d)<CR);
if length(change)==0 % at least one element is changed

change=1+fix(d*rand(1));
end
y(change)=v(change);

function [res, p_min]=roulete(cutpoints)
%
% returns an integer from [1, length(cutpoints)] with probability proportional
% to cutpoints(i)/ summa cutpoints
%
h =length(cutpoints);
ss=sum(cutpoints);
p_min=min(cutpoints)/ss;
cp(1)=cutpoints(1);
for i=2:h

cp(i)=cp(i-1)+cutpoints(i);
end
cp=cp/ss;
res=1+fix(sum(cp<rand(1)));

function result=rss(mod_name, b, y, X);
%
% RSS pro odhady b
%
y_hat= feval(mod_name,b, X);
% size(y_hat)
result=(y-y_hat)’*(y-y_hat);

% zrcadleni, Perturbation y into <a,b>
function result=zrcad(y,a,b)
zrc=find(y<a|y>b);
for i=zrc

while (y(i)<a(i)|y(i)>b(i))
if y(i)>b(i)

y(i)=2*b(i)-y(i);
elseif y(i)<a(i)

y(i)=2*a(i)-y(i);
end

end
end
result=y;

B Search Spaces of NIST Tasks

Table 8: Search spaces – Part 1

task enso gauss1 gauss2 gauss3
i ai bi ai bi ai bi ai bi

1 0 20 0 1000 0 1000 0 1000
2 -100 100 0 1 0 0.5 0 1
3 -100 100 0 1000 0 1000 0 1000
4 -100 100 0 1000 0 300 0 1000
5 -100 100 0.0001 100 0.5 1000 0.0001 100
6 -100 100 0 1000 0 1000 0 1000
7 -100 100 0 1000 0 300 0 1000
8 -100 100 0.0001 100 0.5 1000 0.0001 100
9 -100 100

Table 9: Search spaces – Part 2

task hahn1 thurber lanczos1 lanczos2 lanczos3
i ai bi ai bi ai bi ai bi ai bi

1 0 100 0 10000 0 100 0 100 0 100
2 -1 1 0 5000 0 10 0 10 0 10
3 -0.1 0.1 0 5000 0 100 0 100 0 100
4 -0.1 0.1 0 1000 0 10 0 10 0 10
5 -0.1 0.1 0 10 0 100 0 100 0 100
6 -0.1 0.1 0 10 0 10 0 10 0 10
7 -0.1 0.1 0 10

Table 10: Search spaces – Part 3

task kirby2 mgh09 mgh10 mgh17 rozsman1
i ai bi ai bi ai bi ai bi ai bi

1 0 10 0 100 0 100 0 10 0 100
2 -1 0 0 100 0 1000000 0 10 -10 10
3 0 1 0 100 0 100000 -20 -0.001 -5000 5000
4 -1 0 0.01 100 0 1 -450 0
5 0 1 0 1

Table 11: Search spaces – Part 4

task misra1a misra1b misra1c misra1d
i ai bi ai bi ai bi ai bi

1 -10000 10000 0 2000 0 10000 0 10000
2 -0.2 0.2 0 0.1 0 1 0 1

Table 12: Search spaces – Part 5

task chwirut1 chwirut2 nelson danwood boxbod
i ai bi ai bi ai bi ai bi ai bi

1 0 10 0 10 1 10 0 100 1 1000
2 0 1000 0 1000 0 1 1 10 0.1 2
3 0 100 0 100 -1 0

Table 13: Search spaces – Part 6

task bennet5 eckerle4 rat42 rat43
i ai bi ai bi ai bi ai bi

1 -5000 -1000 0 10 0 1000 0 1000
2 0 500 1 10 0 10 0 100
3 0.1 10 400 500 0 1 0 1
4 0.1 10

