
CONTROLLING FPGA WITH MATLAB
Marek Bártů, Jakub Šťastný

Dept. of Circuit Theory, Faculty of Electrical Engineering
Czech Technical University of Prague

Abstract

In this article we describe simple UART (Universal Asynchronous Receiver and
Transmitter) controller macro developed at our department. The macro implements
simple proprietary communication protocol suitable for controlling application
specific macro in FPGA (Field-Programmable Gate Array) This paper also describes
developed Matlab communication framework for FPGA .

1 Introduction
We are interested in biomedical digital signal processing on FPGA (brain-computer interface or

voice processing) at the FPGA laboratory at our department. We implement various DSP algorithms in
FPGA (Field-Programmable Gate Array). For on-chip verification, measuring and realization itself we
use various FPGA development kits - prototyping boards. All these kits are equipped with JTAG (Joint
Test Action Group) programming interface, but it is suitable only for testing purposes and for
bitstream loading into FPGA. However, we demanded another controlling interface between the
master PC and slave FPGA board for loading of the coefficients, DSP system configuration, setting of
various parameters, reading measured values and similar purposes.

2 Specification
For these purposes we did not demanded a fast link. The interface was intended for control

purposes, not for data transfers. The interface should had ability to control prototyping board directly
with particular commands and also we planned to use it within Matlab environment. There were also
demands to use hardware available on FPGA prototyping boards. We needed an intelligent protocol,
independent on target application and easy to use. We also wanted to use the controller as an example
for students in the future.

3 Controller Description
We decided to use standard UART (Universal Asynchronous Receiver and Transmitter), also

known as the serial interface. Our decision was also supported by the availability of all the necessary
hardware (logic level shifters) right on prototyping boards. Practically usable baud rate achievable
with the serial interface is sufficient for controlling purposes as well. To unify the communication link
between various expected designs we designed a simple ASCII based communication protocol. The
protocol allows to control the target application directly from terminal emulating program (for
example standard windows Hyperterminal).

In the FPGA, the controller is implemented as a simple, two layer core. It is shown in Figure 1.
The first (link) layer consist of UART core. It is an implementation of UART receiver, transmitter and
buffers provided by Xilinx as a free IP core. This particular core is not target independent, it is aimed
only to Xilinx devices. Anyway, for the different FPGAs or ASICs, similar cores implementing UART
(Link layer) could be used. We have not tested another core, but there are a lot of free available cores,
possible to adapt, for example at [8].

Figure 1: Communication scheme

The second (protocol) layer consists of the UART controller macro equipped with address, data
and controlling signals. This part is our own design. The second layer is based on FSM (finite state
machine) that implements the protocol logic.

The protocol controller has two groups of ports:

● first, there are link interface ports. This group consist of two only signals: serial_in and
serial_out are connections to voltage-level transducer for RS232 at the Physical layer (outside
the FPGA).

● The second group is group of system signals clk, which is a clock input, and res_n
signal for resetting.

● The third, last group is application interface. It contains the following signals: reg_in
(input) and reg_out (output) are independently controlled and are thought to be used for
connection with logic out of memory mapped space. Memory mapped space is connected via
addr (32-bit wide address), data_in (8-bit wide data input from user macro to controller – to
personal computer), data_out (8-bit wide data output from controller to user macro – from
personal computer), rd (data read) and wr (data write) ports. Functions of ports are similar to
that used at static RAMs (Random Access Memory).There is also an address register auto-
incrementation feature, so blocks of data could be easily read and write. The macro is
equipped with address, data and controlling signals. All the commands and data transmitted
via the serial interface are passed to these buses.

Figure 2: Controller macro (protocol layer)

4 Hardware Parameters
VHDL-RTL description was used for implementation. The controller has been successfully

synthesized and proved on-chip. We used Digilent prototyping board with Xilinx Spartan3 XC3S200
chip. The size of the whole controller, including UART macros, is 196 slices. The minimum clock
period is 9ns (110MHz). If maximum optimization for area is used, the whole UART controller
occupies 89 slices, but the minimal clock period increase to 24ns (42MHz). It gives up opportunity to
use all possible baud rates up to 115kbps. We also successfully implemented the macro another board
at the FPGA laboratory, equipped with Xilinx XC2V600 chip.

5 Verification Environment
For verification of the interface design and future verification of applications using the

controller we developed a simple verification environment. The VHDL source of the environment is a
part of the controller pack available at WWW pages of the FPGA laboratory [1]. The verification
environment top-level scheme is drawn in Fig. 3. The whole environment is contained in entity
control. The part in FPGA is represented by entity fpgatop. The main signals are reset (b_reset), clock
(b_clk), serial line input (sin) and serial line output (sout). The verification environment works in two
mutually exclusive modes:

1. Simple mode – In this mode, the whole contents of the input file input.txt is send to fpgatop
with minimal time spaces between. Every line of input file contain ASCII decimal value of char to
send. All the data sent by the FPGA are written to output.txt file.

2. Timing mode – By setting generic variable timing_enable to '0' we can activate mode
sending data with defined delay between them. These spaces are in in_timing.txt file. Every line
contain number which indicates the amount of clock cycles before send of data on the same line in
input.txt. file. The delays between output data characters from fpgatop are written to out_timing.txt
file.

These two modes allow either simple verification of a simple system, or a more complex approach
with a precise-defined timing.

The source of that verification environment is a part of the UART controller pack. The
verification environment is tested in ModelSim XE III/Starter 6.0d (part of Xilinx ISE8 WebPack)
freely available at [7]. The detailed description of verification environment is in [5] or [7]. Some parts
of the system are based on a generic verification environment [9].

Figure 3: The verification environment

6 Protocol
The controller command set contains only five commands. The following operation accessible

with these commands: data reading, data writing, changing address, control output set and control
input read. Commands are briefly described in Table 1.

Table 1: CONTROLLER COMMANDS DESCRIPTION

All the commands and also the data are transferred in ASCII format. Because of the ASCII
format, the throughput is a bit lower than in the case the UART without any protocol is used. When
there are demands of use the whole possible bandwidth, the UART IP could be used alone. Detailed
protocol description is a part of [3].

7 Matlab Environment
On the PC side we need only the serial interface. For controlling target application, it is possible

to use any software, which is able to communicate with the serial port. As a part of the controller, we
have developed support functions for Matlab and verification environment in VHDL (Very high-speed
integrated circuits Hardware Description Language). The Matlab environment is described in the text
bellow.

Table 2: MATLAB FRAMEWORK FUNCTIONS

The whole communication support pack for Matlab consist of four functions. In fact, they
implement the commands of the protocol. For successful using of these functions, it's necessity to
open communication port with standard Matlab command fopen. At the end of communication, port
need to be closed using fclose command. The reference to the open port is given to function via
descriptor variable (my_uart in code bellow). All the used functions are described in the table bellow.
For clear understand there is also short Matlab code that demonstrate whole communication process. It
is also possible to use event driven style of communication, but it is not described here. The function
syntax and more information is in [4].

Simple demonstration code is below:

% parameters
port = 'COM3'; rate = 38400; % default in VHDL design

% setup serial port
my_uart = serial (port,'BaudRate',rate,'DataBits',8,'Parity',...

'none','StopBits',1,'Terminator','CR');

A A1234
R R
W W98
G G
S S78

command description example
 set address register
 read from current address
 write data to current address
 get control signal status
 set address register

function description
 board_read read data from specified address
 board_write write data to address
 board_get get control signal status
 board_set set control signals

% open the port
fopen(my_uart);

%%%%%%%%%%%%%%%%%%
% work with port %
%%%%%%%%%%%%%%%%%%
board_write(my_uart,1234,[0,1,255]) % write data to FPGA
data_block = board_read(my_uart,1234,3) % read block from FPGA
board_set(my_uart,status) % set independent output
statut = board_get(my_uart) % read independent input

% close port
fclose(my_uart);

8 Demo
For demonstration and education purposes we prepared simple demo application. The controller

is connected to a seven-segments digit display and there is a memory block of 12 × 8 bits connected to
system address and data buses. This simple peripherals are available from Matlab. This demo is aimed
to introduce controller and its usage to students. Students can simply add their own peripherals and
verify it right in Matlab.

9 Conclusion
We have designed, completed and verified the controller of the serial line protocol and

implemented all the associated software to enable Matlab communicate with the FPGA kit. The design
is usable for controlling our research FPGA systems as well as an educational example of such a
systems. All the features and functions are well documented and a verification framework allowing a
simple simulation of the prospective design is also a part of our system.

The controller could be synthesized in freely available ISE WebPack software pack [7]. and
simulated in ModelSim XE edition which allows our students to work with the system even at their
homes. The simulation could be done without hardware, just on the PC.

Right now we plan use the controller with the voice activity detector design on FPGA which is
currently under development.

The controller with its documentation and the complete verification environment is freely
available for non-commercial (educational and research) purposes at the WWW pages of our
laboratory [1]. Prospective users are kindly asked to cite this work in their publications.

Acknowledgement
This work has been supported by the research program Transdisciplinary research in Biomedical

Engineering II No. MSM6840770012 of the Czech Technical University in Prague.

References

[1] FPGA and Brain Computer Interface Research Laboratory Site at http://amber.feld.cvut.cz/fpga/ .
[2] K. Chapman. UART Transmitter and Receiver Macros. Xilinx Ltd. 2003.
[3] RS-232 page on Wikipedia at http://en.wikipedia.org/wiki/RS-232 .
[4] M. Bártů. Demo of the UART Xilinx FPGA macro block + Matlab communication framework.

Unpublished technical report Z05-6 (in Czech), FEE CTU Prague, 2005. Available at
http://amber.feld.cvut.cz/fpga/ .

[5] M. Bártů. Implementation of communication protocol between the FPGA kit and the PC via the
serial interface. Unpublished technical report Z06-3 (in Czech), FEE CTU Prague, 2006.
Available at http://amber.feld.cvut.cz/fpga/ .

[6] Matlabu R14 Help – section Matlab/External Interfaces.
[7] Xilinx ISE WebPack. Available at http://www.xilinx.com/ise/logic_design_prod/webpack.htm .
[8] OpenCores.org at http://www.opencores.org .
[9] L. Ručkay. Verification environment for FPGA. Unpublished technical report Z05-3 (in Czech),

FEE CTU Prague, 2005. Available at http://amber.feld.cvut.cz/fpga/ .

Marek Bártů
Czech Technical University, Faculty of Electrical Engineering, Dept. of Circuit Theory
Technicka 2, 166 27 Prague 6, Czech Republic
email: bartum1<at>feld<dot>cvut<dot>cz

Jakub Šťastný
Czech Technical University, Faculty of Electrical Engineering, Dept. of Circuit Theory
Technicka 2, 166 27Prague 6, Czech Republic
email: stastnj1<at>feld<dot>cvut<dot>cz

http://amber.feld.cvut.cz/fpga/
http://amber.feld.cvut.cz/fpga/
http://amber.feld.cvut.cz/fpga/
http://www.opencores.org/
http://www.opencores.org/
http://www.xilinx.com/ise/logic_design_prod/webpack.htm
http://www.xilinx.com/ise/logic_design_prod/webpack.htm
http://amber.feld.cvut.cz/fpga/
http://amber.feld.cvut.cz/fpga/
http://en.wikipedia.org/wiki/RS-2
http://en.wikipedia.org/wiki/RS-232
mailto:stastnj1@feld.cvut.cz
mailto:stastnj1@feld.cvut.cz
mailto:stastnj1@feld.cvut.cz
mailto:stastnj1@feld.cvut.cz
mailto:stastnj1@feld.cvut.cz

	CONTROLLING FPGA WITH MATLAB
	1Introduction
	2Specification
	3Controller description
	4Hardware Parameters
	5Verification environment
	6Protocol
	7Matlab Environment
	8Demo
	9Conclusion
	Acknowledgement

