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Abstract

The contribution deals with mathematical modelling of human limb and numer-
ical simulation of mechanical processes taking place during static loadening. It
is important to know stress and deformation distributions in lower limb for ex-
ample for application of the total knee or the total hip replacements. A two
dimensional finite element approximation and domain decomposition method
are used. System MATLAB, namely toolbox pdetool, is very useful for mesh
generating and vizualization.

1 Introduction

In biomechanics of human skeleton there are problems whose investigations lead to solving varia-
tional problems. Such problems are described frequently by variational inequalities representing
the principle of virtual work in its inequality form. Example of this is bearing of loaded human
limb. The hip and the knee joints are the most effortful joints in human body and study of the
stress/strain distribution is essential before application of their prosthesis. The success of the
artificial replacements depends on many factors. The mechanical factor is an important one.
The idea of a prosthesis being a device that transfer the joint loads to the bone allows explain-
ing the mechanical factor in terms of the load transfer mechanism. A complex relation exists
between this mechanism, the magnitude direction of the loads, the geometry of the bone-joint
prosthesis configuration, the elastic properties of the materials and the physical connections at
the material connections. The numerical solution is based on the theory of contact problem
in elasticity and the finite element approximation. It is possible to use domain decomposition
technique for efficient solution of the problem.

2 The Model

Let the investigated part of the human skeleton occupy a union Ω of “s” bounded domains
Ωι, ι = 1, ..., s in IR2, denoting separate components of human joints, with Lipschitz boundaries
∂Ωι. Let the boundary ∂Ω = ∪s

ι=1∂Ωι consist of four disjoint parts such that ∂Ω = Γτ ∪ Γu ∪
Γc ∪ Γ0. Based on knowledge of the physiological distribution of insertions in bone tissue and
skeletal sites through which the loading forces are transmitted due to weight of the human
body and due to acting muscle’s forces, we eliminate this portion of the skeleton boundary as
Γτ = 1Γτ∪ 2Γτ . By Γu we denote the part of the skeletal boundary, where we simulate its fixation
or the surgical osteotomy technique, respectively. The common contact boundary between both
joint components Ωk and Ωl before deformation we denote by Γkl

c = ∂Ωk ∩ ∂Ωl, k, l = 1, ..., s,
k �= l, and by Γc = ∪k,lΓkl

c the whole contact boundary. Moreover, the boundary Γ0 simulates
the symmetry of the pelvis. Let body forces F, surface tractions P and slip limits gkl be given.

We have the following problem (P): find the displacements uι in all Ωι such that

∂

∂xj
τij(uι) + F ι

i = 0 in Ωι, 1 ≤ ι ≤ s, i = 1, 2, (1)

where the stress tensor τij is defined by

τij(uι) = cι
ijklekl(uι) in Ωι, 1 ≤ ι ≤ s, i = 1, 2, (2)



with boundary conditions

τij(u, T )nj = Pi on 1Γτ , i = 1, 2, (3)

τij(u, T )nj = 0 on 2Γτ , i = 1, 2, (4)

u = u0 on Γu, (5)

uk
n − ul

n ≤ 0, τk
n ≤ 0, (uk

n − ul
n)τk

n = 0 on ∪k,l Γkl
c , 1 ≤ k, l ≤ s, (6)

| τkl
t |≤ gkl on ∪k,l Γkl

c , 1 ≤ k, l ≤ s,

| τkl
t |< gkl =⇒ uk

t − ul
t = 0,

| τkl
t |= gkl =⇒ there exists ϑ ≥ 0 such that uk

t − ul
t = −ϑτkl

t ,

⎫⎪⎪⎬
⎪⎪⎭

(7)

un = 0, τt = 0 on Γ0. (8)
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Figure 1: The model of human
limb

Here eij(u) = 1
2( ∂ui

∂xj
+ ∂uj

∂xi
) is the small strain tensor, normal

and tangential components of displacement (u = (ui), i = 1, 2)
and stress (τ =(τi)) vectors uk

n = uk
i n

k
i , ul

n = ul
in

l
i = −uk

i n
k
i

(no sum over k or l), uk
t = (uk

ti), uk
ti = uk

i − uk
nnk

i , ul
t = (ul

ti),
ul

ti = ul
i − ul

nnl
i, i = 1, 2, τk

n = τk
ijn

k
i n

k
j , τk

t = (τk
ti), τk

ti = τk
ijn

k
j −

τk
nnk

i , τ l
n = τ l

ijn
l
in

l
j, τ l

t = (τ l
ti), τ l

ti = τ l
ijn

l
j − τ l

nnl
i, τkl

t ≡ τk
t .

Assume that cι
ijkl are positive definite symmetric matrices such

that 0 < cι
0 ≤ cι

ijklξijξkl | ξ |−2≤ cι
1 < +∞ for a.a. x ∈ Ωι, ξ ∈

IR4, ξij = ξij, where cι
0, cι

1 are constants independent of x ∈ Ωι.

Let us introduce W = 
s
ι=1[H

1(Ωι)]2, ‖v‖W =
(
∑

ι≤s

∑
i≤2 ‖vι

i‖2
1,Ωι)

1
2 and the sets of virtual and admissible dis-

placements V0 = {v ∈ W | v = 0 on Γu and vn = 0 on Γ0},
V = u0 + V0, K = {v ∈ V | vk

n − vl
n ≤ 0 on ∪k,lΓkl

c }. Assume
that uk

0n − ul
0n = 0 on ∪k,lΓkl

c . Let cι
ijkl ∈ L∞(Ωι), F ι

i ∈ L2(Ωι),
Pi ∈ L2( 1Γτ ), uι

0 ∈ [H1(Ωι)]2.

Multiplying equation (1) by a test function, integrat-
ing per partes over the domain Ωι and using the boundary
conditions and assuming that u0 satisfies conditions uk

0n −
ul

0n = 0 on ∪k,lΓkl
c , we obtain the following variational prob-

lem:

Definition

We said that the function u is a weak solution of the problem
(P), if u− u0 ∈ K and

a(u,v − u) + jg(v) − jg(u) ≥ L(v − u) ∀v ∈K, (9)

where

a(u,v) =
∑s

ι=1

∫
Ωι cι

ijkleij(uι)ekl(vι) dx,

jg(v) =
∑

k,l

∫
Γkl gkl | vk

t − vl
t | ds,

L(v) =
∑s

ι=1

∫
Ωι F ι

i v
ι
idx−

∑
ι≤s

∫
Γι

τ
P ι

i v
ι
i ds.

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(10)

The model of human limb is presented in Fig. 1.



3 Numerical results
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Figure 2: Deformations after static loadening

The model of the human limb was derived
from the X-ray image. In the model the mate-
rial parameters are as follows: Young’s modu-
lus for bone E = 1, 71 × 1010 [Pa] and for car-
tilage E = 0, 492 × 109 [Pa]. Poisson’s ratio
for bone ν = 0, 25 and for cartilage ν = 0, 1.

On the part of the boundary of the in-
vestigated skeleton denoted by red color (see
Fig. 1) the “stick” condition (5) is prescribed.
Conditions (6) and (7) holds for the contact
boundaries which are denoted by yellow color.
Condition (8) simulates the symmetry of the
pelvis and we assume that it’s prescribed on
blue part of boundary. The pelvis is loaded on
the upper part of boundary (used green color)
by a loading 1× 106 [Pa]. The loadings evoked
by muscular forces were neglected.

The numerical solution is based on the
finite element method and domain decompo-
sition technique. Using of the finite element
approximation is discussed in [3]. For mesh
generating we used toolbox pdetool - the par-
tial differential equation toolbox. For efficient
solution of the problem we used domain de-
composition algorithm which is described in
[1] and [2].

Whole area is splitted into 16 subdo-
mains. Discretization statistics are character-
ized by 1436 nodes and 2137 elements, 272
interface elements between subdomains of do-
main decomposition.

For vizualization of obtained solutions
we exploited again toolbox pdetool, mainly
function pdeplot.

In Fig. 2 the deformation of the limb
after loading is presented. Details of the de-
formations are shown on Fig. 3(a) for the hip
joint and on Fig. 3(b) for the knee joint.

On Figs 4(a) and 4(b) the horizontal
and the vertical components of the displace-
ment are presented.

In Figs 5(a) and 5(b) the details of the
principal stresses for the hip joint and for the
knee joint are presented.
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(a) The hip joint
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Figure 3: Detail of deformations
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(a) Horizontal component
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Figure 4: The displacement
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(a) The hip joint
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(b) The knee joint

Figure 5: Detail of the principal stresses
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