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Abstract

The paper deals with the use of wavelet transform for signal and image de-noising
employing a selected method of thresholding of appropriate decomposition coef-
ficients. The proposed technique is based upon the analysis of wavelet transform
and it includes description of global modification of its values. The whole method
is verified for simulated signals and applied for processing of biomedical signals
representing EEG signals and MR images corrupted by additional random noise.

1 Introduction

The wavelet transform (WT) is a powerful tool of signal processing for its multiresolutional
possibilities. Unlike the Fourier transform, the WT is suitable for application to non-stationary
signals with transitory phenomena, whose frequency response varies in time [2].

The wavelet coefficients represent a measure of similarity in the frequency content between
a signal and a chosen wavelet function [2]. These coefficients are computed as a convolution
of the signal and the scaled wavelet function, which can be interpreted as a dilated band-pass
filter because of its band-pass like spectrum [5].

The scale is inversely proportional to radian frequency. Consequently, low frequencies correspond
to high scales and a dilated wavelet function. By wavelet analysis at high scales, we extract
global information from a signal called approximations. Whereas at low scales, we extract fine
information from a signal called details.

Signals are usually band-limited, which is equivalent to having finite energy, and therefore we
need to use just a constrained interval of scales. However, the continuous wavelet transform
provides us with lots of redundant information.

The discrete wavelet transform (DWT) requires less space utilising the space-saving coding based
on the fact that wavelet families are orthogonal or biorthogonal bases, and thus do not produce
redundant analysis. The DWT corresponds to its continuous version sampled usually on a dyadic
grid, which means that the scales and translations are powers of two [5].

In practise, the DWT is computed by passing a signal successively through a high-pass and a low-
pass filter. For each decomposition level, the high-pass filter hd forming the wavelet function
produces the approximations A. The complementary low-pass filter ld representing the scaling
function produces the details D [3]. This computational algorithm shown in Fig. 1a is called
the subband coding.

The resolution is altered by the filtering process, and the scale is changed by either upsampling
or downsampling by 2. This is described [4] by relations

D1[n] =
∞∑

k=−∞
hd[k] x[2n − k] (1)

A1[n] =
∞∑

k=−∞
ld[k] x[2n − k] (2)

where n and k denote discrete time coefficients and x stands for the given signal.
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Figure 1: Discontinuity detection in the ECG signal applying wavelet analysis and presenting
(a) one-dimensional wavelet subband coding scheme, (b) ECG signal with a discontinuity, and
(c) absolute detail decomposition coefficients using the db4 wavelet function

Half-band filters form orthonormal bases, and therefore make the reconstruction easy. The syn-
thesis consists of upsampling by 2 and filtering [4]:

x[n] =
∞∑

k=−∞
(D1[k] hr[2k − n] + A1[k] lr[2k − n]) (3)

The reconstruction filters lr and hr and identical with the decomposition filters ld and hd,
respectively, except the reverse time course. These filters attain to produce perfect signal re-
construction from the DWT coefficients provided that the signal is of finite energy, and that
the wavelet satisfies the admissibility condition [1]. Both these conditions are satisfied with
natural signals and usual wavelets [2, 5].

The practical use of the DWT is to be discussed in later sections. We employ here two types of
wavelet functions, which are the Daubeschies wavelet db4 and the symlet wavelet (sym4). Both
functions are given by 8 coefficients and have similar properties [2].

2 Signal Analysis

In signal processing, wavelets are used for many purposes [2]. Such as denoising, detecting
trends, breakdown points, discontinuities in higher derivatives and self-similarity in signals. At
first, we focus on discontinuity detection.

For the Electrocardiogram (ECG) signal, Fig. 1 demonstrates the use of the db4 wavelet for im-
pulse detection, i.e. detection of a discontinuity in frequency.

The impulse is generated artificially for our purposes. The db4 wavelet is chosen because of its
good performance in this case. The decomposition runs up to level 3, which is enough to make
the discontinuity apparent.



3 Signal Denoising

This section describes signal denoising with the application on the ECG signal.

3.1 Soft and Hard Thresholding

Signal denoising using the DWT consists of the three successive procedures, namely, signal
decomposition, thresholding of the DWT coefficients, and signal reconstruction. Firstly, we
carry out the wavelet analysis of a noisy signal up to a chosen level N . Secondly, we perform
thresholding of the detail coefficients from level 1 to N . Lastly, we synthesize the signal using
the altered detail coefficients from level 1 to N and approximation coefficients of level N [2].
However, it is generally impossible to remove all the noise without corrupting the signal.

As for thresholding, we can settle either a level-dependent threshold vector of length N or a global
threshold of a constant value for all levels. According to D. Donoho’s method, the threshold
estimate δ for denoising with an orthonormal basis is given by [1]

δ = σ
√

2 log L (4)

where the noise is Gaussian with standard deviation σ of the DWT coefficients and L is the num-
ber of samples or pixels of the processed signal or image. This estimation concept is used by
Matlab.

From another point of view, thresholding can be either soft or hard [1]. Hard thresholding
zeroes out all the signal values smaller than δ. Soft thresholding does the same thing, and
apart form that, subtracts δ from the values larger than δ. In contrast to hard thresholding,
soft thresholding causes no discontinuities in the resulting signal. In Matlab, by default, soft
thresholding is used for denoising and hard thresholding for compression [2].

3.2 Applications to ECG Signals

Denoising of the (ECG) signal is displayed in Fig. 2. The removing of artificially added random
noise is carried out by thresholding of the DWT coefficients up to level 3. As a wavelet function,
we choose the sym4, since in this application it performs better than the db4. As a thresholding
method, we use a soft global threshold δ of an estimated value given by Eq. (4). The results are
left to visual examination. The Matlab code is also enclosed.

�

�

�

�

%% ECG SIGNAL DENOISING BY THRESHOLDING ITS DWT COEFFICIENTS
% ORIGINAL ECG SIGNAL

ecg=load(’ECG01.TXT’);
ecg=detrend(ecg); % Remove a linear trend
ecg=ecg(100:611); L=length(ecg)

% NOISY ECG SIGNAL
ecgN=ecg+160*randn(L,1);

%% WAVELET DECOMPOSITION
% Default values for denoising using a wavelet

[THR,SORH,KEEPAPP]=ddencmp(’den’,’wv’,ecgN)
level=3 % decomposition up to level 3

% De-noising by thresholding SYM4 detail coefficients
[ecgC,CecgC,LecgC,PERF0,PERFL2]=wdencmp(’gbl’,ecgN,...

’sym4’,level,THR,SORH,KEEPAPP); % obtaining clean ECG signal ecgN
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Figure 2: ECG signal de-noising by thresholding of wavelet detail coefficients up to the third level
presenting (a) original and noisy ECG signal, (b) original and enhanced ECG signal, (c) decom-
position and reconstruction up to the third level using the sym4 wavelet function, (d) wavelet
coefficients of the noisy signal and the estimated threshold level δ, (e) principles of soft thresh-
olding, and (f) altered wavelet coefficients for signal reconstruction

4 Image Denoising

In image processing, wavelets are used for instance for edges detection, watermarking, texture
detection, compression, denoising, and coding of interesting features for subsequent classifica-
tion [2]. Image denoising by thresholding of the DWT coefficients is discussed in the following
subsections.

4.1 Principles

The principles of image denoising using the DWT are analogous to that for signals described
above. For images, we need to extend our work to two dimensions.

To compute the two-dimensional DWT of an image, we decompose the approximations at level j
to obtain four matrixes of coefficients at level j + 1. These four matrixes for single level decom-
position using db4 displayed in Fig. 3c are, clockwise, the approximations and the horizontal ,
vertical and diagonal details of level 1.



original
image

 Im(i,j)

l
d
[n]

h
d
[n]

2

2

l
d
[n]

h
d
[n]

l
d
[n]

h
d
[n]

2

2

2

2

 (a) 2D DWT
DECOMPOSITION RECONSTRUCTION

2

2

2

2

l
r
[n]

h
r
[n]

l
r
[n]

h
r
[n]

2

2

l
r
[n]

h
r
[n]

reconstr.
image

 Im(i,j)

ROWS COLUMNS COLUMNS ROWS
 (b) NOISY IMAGE

 (c) DECOMPOSITION

−1

0

1

2

 (e) DB4 COEFFICIENTS

A
1

H
1

V
1

D
1

δ

−δ −1

0

1

2

 (f) ALTERED DB4 COEFFICIENTS

A
1

H
1

V
1

D
1

 (d) RECONSTRUCTION

soft global
thresholding

Figure 3: MR image enhancement by thresholding of the wavelet decomposition coefficients
presenting (a) one-dimensional wavelet subband coding scheme, (b) noisy MR image, (c) first
level decomposition using the db4 wavelet function, (d) reconstructed and interpolated image,
(e) absolute db4 decomposition coefficients, and (f) thresholded decomposition coefficients used
for image reconstruction

As shown in the scheme in Fig. 3a, first, we convolve the rows of the image, or generally
the matrix of the approximations at level j, with a low-pass and a high-pass decomposition
filter ld[n] and hd[n], respectively. Then we downsample both resulting matrixes by 2 keeping
every even column. Second, we filter each of the matrixes by their columns using the previously
mentioned filters. Then we downsample all four resulting matrixes by 2 keeping every even
row to obtain four matrixes of one-level decomposition coefficients, or generally four matrixes
of (j+1)-level coefficients [2]. We can also reconstruct the image by using these coefficients
matrixes, upsampling by 2 and the reconstruction filters lr[n] and hr[n].

4.2 Applications to MR Images

Magnetic Resonance (MR) image denoising by thresholding of the wavelet detail coefficients
is illustrated in Fig. 4. The programme code is also enclosed. The decomposition runs up
to level 2 using the db4 wavelet function. The wavelet coefficient are altered with a soft global
threshold δ estimated from Eq. (4). The reconstructed image is smoothed by cubic interpolation.
The areas along the image boundaries are coloured with grey, hence these pixels would require
different handling.
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%% MR IMAGE DENOISING BY THRESHOLDING ITS DWT COEFFICIENTS
% GIVEN IMAGE DEFINITION

load(’MRpater004.mat’), A=im2double(A);
A=A(64:191,64:191); % Image cut

% RANDOM NOISE ADDITION
An=A+0.2*randn(size(A)); % Noisy image cut

% DB4 DECOMPOSITION TO LEVEL 2
level=2;
[c,s]=wavedec2(An,level,’db4’); % Decomposition vector c and the

% corresponding bookkeeping matrix s
% Modify matriw s for generating indexes ind (below)

s2=s(2:level+1,1)’; s2=[s2; s2; s2]; s2=[s(1);s2(:)]; ss=s2.^2;
% THRESHOLDING OF DWT DETAIL COEFFICIENTS

THR = ddencmp(’den’,’wv’,An) % Global threshold estimate
% Leave out approximations from thresholding

for i=1:7, if i==1 thr(i)=0; else thr(i)=THR; end, end
% Indexes dividing individual coefficients sets in vector c

ind(1)=0;
for i=1:7, ind(i+1)=sum(ss(1:i)); end

% Soft thresholding of dwt coefficients
for i=1:7
k=find(abs(c(ind(i)+1:ind(i+1)))<=thr(i));
k=k+ind(i); cd(k)=0;
k=find(abs(c(ind(i)+1:ind(i+1)))>thr(i));
k=k+ind(i); cd(k)=sign(c(k)).*(abs(c(k))-thr(i));

end;
% IMAGE RECONSTRUCTION

Z=waverec2(cd,s,’db4’);
% Cubic interpolation

Zinterp=interp2(Z,’*cubic’);
% Display grey image boundaries

[m,n]=size(Z); Zmean=mean2(Z); Z([1:4,m-3:m],:)=Zmean;
Z(:,[1:4,n-3:n])=Zmean; [m,n]=size(Zinterp);
Zinterp([1:8,m-7:m],:)=Zmean; Zinterp(:,[1:8,n-7:n])=Zmean;

5 Conclusions

This work provides practical examples of signal and image enhancement and components detec-
tion using the wavelet transform along with the enclosed Matlab code. The data we process are
a real biomedical ECG signal and a spinal MR image. Detection of signal and image components
can be utilised for their classification.
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Figure 4: MR image de-noising by thresholding of the wavelet detail coefficients up to the
second level presenting (a) MR image with the additional random noise, (b) decomposition
up to the second level using the db4 wavelet function, (c) image reconstruction after the thresh-
olding of wavelet coefficients, and (d) wavelet coefficients of the noisy image and the estimated
threshold level δ
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