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Abstract

The algorithm for generating a representation of the 2D fractal is deceptively
simple. A repeating calculation is performed for each x,y point in the plot area
and based on the behaviour of that calculation, a colour is chosen for pixel
representing selected point.

The same way is used for generating multi-dimensional fractals, in our case 4D
fractals. To generate famous Mandelbrot set we use a simple iteration process
represented by the equation z = z2 + constant, where z ∈ C. For 4D fractals we
will use z = zx + constant, where z, x ∈ C.

The generating process of the fractal consist of many iterations, thus we need
a great deal of the computer time. However, these iterations do not depend on
each other, so we can generate fractal representation by more than one processor
very easily. This is the right point for utilizing multiprocessor computers by
MPI library, especialy with MatlabMPI toolbox developed by Dr. J. Kepner in
Lincoln Laboratory, MIT.

1 Matlab and Parallel Computing

Matlab is simple but powerful language for implementing numerical computations and we use it
for algorithm development, simulation and testing. Many of these computations could benefit
from faster execution on a parallel computer. However, standard usage of the parallel comput-
ers assumes good knowledge of C or Fortran programming language and complicated usage of
libraries for many standard algebra or mathematical analysis operations. If we could combine
the simplicity of Matlab language with the ability to run on multiple processors, we could obtain
a very powerful tool for solving large-scale problems.

The Message Passing Interface (MPI) is the standard for implementing programs on mul-
tiple processors, independently on parallel computer architecture. MPI defines C and Fortran
language functions for doing interprocess communication in a parallel program.

MatlabMPI[1] is a set of Matlab scripts that implement a subset of MPI and allow any
Matlab program to be run on a parallel computer. This package can be freely downloaded from
http://www.ll.mit.edu/MatlabMPI.

The main benefit is simple use but the greatest disadvantage is the fact that MatlabMPI
uses disk I/O for simulating message passing through interprocessor interface. This problem can
be eliminated by the use of SMP computers with working directory located on the ramdisk. As
modern computer processors are based on more than one core so even in laptop computer we
have small parallel computer and if we use two-processor computers we have four processors to
utilize with shared memory. We have tested MatlabMPI under Linux with great success.

We will try to subscribe use of the MatlabMPI with very simple problem - to generate
fractals.

2 2D Fractals

The algorithm[2] for generating a representation of the 2D fractal is simple. A repeating calcu-
lation - iteration - is performed for each x, y point in the plot area and based on the behavior
of that calculation, a color is chosen for pixel representing selected point.



To generate famous Mandelbrot set we use a simple iteration process represented by the
equation

zn+1 = z2
n + c,

where z, c ∈ C, z0 = 0, Re(c) = x, Im(c) = y. The stop condition is |zn − zn−1| < ε and color of
the point x, y represents number of iterations needed to achieve convergency. If |zn| > 2 then
the process diverges. See Fig.1. To obtain this image with resolution 401x401 about 1.5 millions
of iterations have been done. However, these iterations do not depend on each other, so we can
compute them separately - we can use more than one processor.

Figure 1: Mandelbrot set computed by 1 processor

This is presented in Fig.2. This fractal was computed by two processors simultaneously,
the computational domain was simply divided into two parts. The source code of this example

Figure 2: 2D fractal computed by 2 processors; with nice detail

is listed below.



% To run, start Matlab and type:

%

% eval( MPI_Run(’fractal’,3,{}) ); %one master, two slaves

% master consumes very little CPU time

%

% Or, to run a different machines:

%

% eval( MPI_Run(’fractal’,3,{’machine1’ ’machine2’ ’machine3’}) );

% Initialize MPI.

MPI_Init;

% Create communicator.

comm = MPI_COMM_WORLD;

% Get size and rank.

comm_size = MPI_Comm_size(comm); my_rank = MPI_Comm_rank(comm);

if comm_size<2

disp(’ need more processors’);

break;

end

x=-2:0.01:2; %whole domain

y=-2:0.01:2;

Z=zeros(length(x),length(y)); %matrix of iterations

%%%%%%%%%%%%%%%%%%%%%

if my_rank=0 %master

%%%%%%%%%%%%%%%%%%%%%

domains=comm_size-1; %same number of domains as slave processors

%divide vector x to parts

veclen=floor(length(x)/domains);

for i=1:domains-1

MPI_Send(i,1,comm,(i-1)*veclen+1:i*veclen) %send "pieces of work"

end;

MPI_Send(domains,1,comm,(domains-1)*veclen+1:length(x)); %last piece

for i=1:domains

Z = Z + MPI_Recv( i, 100, comm ); %Collect results

end;

image(x,y,Z);

shading interp;

colormap(jet);

%%%%%%%%%%%%%

end %master

%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%

if my_rank>0 %slave

%%%%%%%%%%%%%%%%%%%

vektor=MPI_Recv(0,1,comm); %what to do

koreny=roots([10 0 10 0 -1 0 1 0]);

for l=vektor;

for k=1:length(y);

konec=1;

z=x(l)+i*y(k);

while konec>0

zn=z-(10*z^7 +10*z^5 - z^3 + z)/ ...

(70*z^6+50*z^4+3*z^2+1);

%fractal formula, Newton’s method

konec=konec+1;

if min(abs(z-koreny))<.05;

konec=-konec;

end;

if konec>50

konec=-konec;

end;

z=zn;

end;

Z(l,k)=-konec;

end;

end;

MPI_Send( 0, 100, comm, Z ); %send my results

exit;

%%%%%%%%%%%%%%

end %slave

%%%%%%%%%%%%%%

If we use more than one processor, we can observe that some of the processors have done
their job quickly but some of them are still computing, especially when we strictly divide the
computational domain into the same number of parts as the number of processors used.

To avoid this situation we need to apply some ”load balancing” - the processors com-
pute approximately the same amount of calculations. An easy way to do that is to divide the
computational domain into a greater number of subdomains (much greater than the number of
processors) and declare one process as ”master”. This process assigns subdomains to proces-
sors and collects their outputs. This proces is called ”Master” and the processes which provide
calculations are called ”Slaves” - so called Master-Slave model.

3 Multi-dimensional Fractals

A similar procedure is used for generating multi-dimensional fractals. For generating 4D fractals
(Fig.4) we will use

zn+1 = zx
n + c,

where z, x, c ∈ C. We can choose many different start conditions. If we fix a real or imaginary
part of the exponent, we obtain 3D (Fig.3) fractals. For generating these structures we need a
great deal of computational time, so it is very useful if we can utilize more processors.



Figure 3: 3D fractal, the red parts represent points which need 5 iterations to converge and the
violet parts represent points which need 10 iterations.

To render presended pictures the Matlab’s functions patch and isosurface were used.



Figure 4: 4D fractal, the structure shown represents points which need 5 iterations to converge;
changing color represents an imaginary part of the exponent in the computation formula.

References

[1] J. Kepner. Parallel programming with MatlabMPI. http://www.ll.mit.edu/MatlabMPI/.
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