
A STRONG NONRANDOM PATTERN IN MATLAB
DEFAULT RANDOM NUMBER GENERATOR

Petr Savicky
Institute of Computer Science, Academy of Sciences of CR, Czech Republic

savicky@cs.cas.cz

Abstract

The default random number generator in Matlab versions between 5 and at least 7.3 (R2006b)
has a strong dependence between the numbers zi+1, zi+16, zi+28 in the generated sequence. In
particular, there is no index i such that the inequalities zi+1 < 1/4, 1/4 ≤ zi+16 < 1/2, and
1/2 ≤ zi+28 are satisfied simultaneously. This fact is proved as a consequence of the recurrence
relation defining the generator. A random sequence satisfies the inequalities with probability 1/32.
Another example demonstrating the dependence is a simple function f with values −1 and 1, such
that the correlation between f(zi+1, zi+16) and sign(zi+28 − 1/2) is at least 0.416, while it should
be zero.

A simple distribution on three variables that closely approximates the joint distribution of
zi+1, zi+16, zi+28 is described. The region of zero density in the approximating distribution has
volume 4/21 in the three dimensional unit cube. For every integer 1 ≤ k ≤ 10, there is
a parallelepiped with edges 1/2k+1, 1/2k and 1/2k+1, where the density of the distribution is
2k. Numerical simulation confirms that the distribution of the original generator matches the
approximation within small random error corresponding to the sample size.

1 Introduction

Matlab contains three generators of pseudorandom numbers, which are implemented as different
methods used by function rand. According to the documentation of this function, the user may
choose between the different methods using commands

rand(’state’,s)
rand(’seed’,s)
rand(’twister’,s)

where s is the seed. If none of these commands is used in a session, rand(’state’,0) is assumed. This
applies to all Matlab versions between 5 and at least 7.3 (R2006b), which is the current version at the
time of writing the paper.

It appears to be quite useful not to rely on the default and set ’twister’, which implements Mersenne
Twister generator, see [10]. The following Matlab code demonstrates the problem if the user does not
set any of the methods explicitly or sets it to ’state’:

Z = rand(28,100000);
condition = Z(1,:) < 1/4;
scatter(Z(16,condition),Z(28,condition),’.’);

The code constructs a random matrix of dimension 28 times 100000 and displays a scatter plot of
the conditional distribution of pairs of the values from rows 16 and 28 under the condition that the
corresponding value in row 1 is less than 1/4. The problem is that this code produces approximately
the output presented at Figure 1. For a correct generator, the points should be uniformly distributed
in the unit square, since different entries of a random matrix constructed in the above way simulate
independent variables.

It is important to note that another experimental demonstration of nonuniformity of the generator
is published at [13] among Technical Solutions for Matlab as Solution Number 1-10HYAS, where the
problem is demonstrated using a sequence of 5 · 107 consecutive random numbers obtained using the
default setting of rand. A reference to it was given to the author of the current paper in a reply to
posting the problem at the news group of Matlab user community. See Section 3.5 for more detail.
The basic documentation of rand does not contain any information on the problem.



Figure 1: Scatter plot of points Z(16, condition), Z(28, condition).

The current paper demonstrates that the dependence is much stronger than implied by [13]. It
is shown that the generator may produce stable and highly biased results already using the two
most significant bits of 390 consecutive random numbers. Moreover, the reason for the dependence
is determined by the analysis of the source code of the generator. In particular, the indices of the
dependent numbers in the sequence are identified.

If we denote the sequence of the numbers generated by rand as zi, then the rows 1, 16 and 28 of
matrix Z used in the plot above are formed by the numbers z28 j+1, z28 j+16 and z28 j+28 for consecutive
values of j starting at 0. The observed pattern is due to the fact that there is a strong dependence
between these three numbers. Note that these triples do not overlap. The dependence remains the
same, even if we consider overlapping triples zi+1, zi+16, zi+28, for all i. This may be verified for
example by the following code

Z = rand(1,100028);
Z1 = Z(1, 1:100001);
Z16 = Z(1,16:100016);
Z28 = Z(1,28:100028);
scatter(Z16(Z1 < 1/4),Z28(Z1 < 1/4),’.’);

The generated plot shows the same overall pattern.
In Figure 1, there are five squares of edge 1/4, which do not contain any of the points (zi+16, zi+28)

selected using zi+1. Consider the two of these squares, whose projection to the x-axis is the interval



[1/4, 1/2]. Combining the condition that (zi+16, zi+28) belongs to their union with the condition on
zi+1, which was used to produce the plot, we obtain the following inequalities

0 ≤ zi+1 < 1/4
1/4 ≤ zi+16 < 1/2
1/2 ≤ zi+28 < 1 .

(1)

Figure 1 suggests that there is no index i such that the numbers generated from rand satisfy these
three inequalities simultaneously, although a random sequence satisfies them with probability 1/32.
This is indeed true as shown in Section 4.3 as a consequence of the recurrence relation used to define
the generator.

The structure of the current paper is as follows. Section 2 presents general remarks on the
situation. Section 3 presents several examples of Monte Carlo integrations, whose result is biased
due to the discussed dependence. The technical reason for the failure of the default method of rand is
discussed in detail in Section 4 using the source code of the generator. A simple distribution closely
approximating the dependence is presented in Section 5. Using this approximation, the volume of
the region with zero density in the distribution of (zi+1, zi+16, zi+28) is shown to be close to 4/21.
Moreover, an algorithm, which allows to calculate the density of the approximating distribution in
any given point, is presented. Numerical comparison of the density of the approximating distribution
and sample estimates of the density of the numbers from the original generator is presented in Section
5.4 using samples of sizes 109, 1010 and 1011. Remarks and references concerning the complexity
theoretic point of view on pseudorandom generators are presented in Section 6.

2 General remarks

The reason for the failure of the default method of rand is not that we are using pseudorandom
numbers. On the contrary to the usual perception, is it consistent with the current state of knowledge
to assume that efficient pseudorandom number generators with good statistical properties do exist.

There is a trivial argument against generation of pseudorandom numbers using a fixed algorithm.
If we are given a sequence of consecutive numbers from the generator, we can search through the
space of all possible seeds to find the one that generates exactly the given sequence. Once the seed is
found, the next number may be predicted with a high probability of success or even with certainty,
if the given sequence is long enough. However, this argument becomes pointless, if we consider also
the complexity of the computation. For a good generator, the above scheme of prediction is infeasible
due to a large computation time.

If we limit our consideration to numerical applications, whose running time is bounded by a
polynomial in the size of the input, then it is consistent with the current state of knowledge in
complexity theory to assume that there are generators, which pass all statistical tests computable in
polynomial time. See Section 6 for more detail.

On the other hand, there is no hope to give a mathematical proof that a concrete generator passes
all statistical tests computable in polynomial time. In particular, such a proof would automatically
imply P6=NP, which belongs to the hardest problems in complexity theory. Hence, we have to accept
that there is always a chance that a new dependence is found in a used generator. However, it is
necessary to distinguish different levels of severity of such dependencies. Two important quantitative
characteristics of a dependence are the following:

1. The length of the sequence of random numbers that has to be generated in order to demonstrate
a significant difference from truly random numbers.

2. The computation time needed to verify the difference numerically.

Besides these quantitative criteria for measuring known dependencies, it is possible to distinguish how
hard it was to find the dependence at the current state of knowledge. If someone finds an unkown
dependence in a generator that was considered good at the current state of the knowledge, this may
even be a mathematical discovery. It is not possible to avoid such situations. However, there is no



reason to use generators containing dependencies that may easily be determined using the description
of the generator.

The dependence in the method ’state’ of rand is very bad in all three directions. Already a
characteristic function of a parallelepiped in three out of 28 consecutive coordinates in precision of
roughly two most significant bits may have highly biased expected value. If we like to formulate this
in terms of statistical significance, we need more numbers. However, the two most significant bits from
390 consecutive nubers are sufficient to formulate a simple frequency test which rejects randomness
of the generator at the level 1.4 · 10−9 of statistical significance. In order to perform the test, a few
hundreads of operations are sufficient. See Section 3.4 for more detail.

Moreover, the dependence is very easy to find. Immediately from the description of the generator,
it is clear that there is a component with a known strong dependence in dimension 28. Combining
the two components of the generator may eliminate this. However, the used algorithm for combining
the components does not belong among the combinations recommended by the theory. It is easy
to see from the description of the combining algorithm that there is a risk that the selected type of
combination does not eliminate the dependence in the first component. Verifying this requires a few
lines of code and a few seconds of CPU time.

Good sources of information on pseudorandom generators for simulations are for example [4], [7]
and [12]. References to practical implementations of good linear generators are e.g. in papers [5], [11].
An example of an efficient and reliable nonlinear generator is presented in [3].

3 Failures in Monte Carlo integration

3.1 An event with positive probability never occurs

Let us reformulate the problem discussed in the introduction in terms of a Monte Carlo integration.
It is usual to consider the nonoverlapping subsequencies (zdj+1, . . . , zdj+d) for successive values of j as
independent realizations of uniformly distributed points in the unit cube of dimension d. The example
from the introduction shows that using this with the default setting of rand may lead to very biased
results, if d ≥ 28.

Assume, one likes to determine the probability that a random vector (Z1, . . . , Z28) chosen uniformly
from the unit cube in dimension 28 satisfies the inequalities

0 ≤ Z1 < 1/4
1/4 ≤ Z16 < 1/2
1/2 ≤ Z28 < 1 ,

(2)

which are a reformulation of the inequalities (1) from the introduction. The correct answer is obviously
1/32.

Using Monte Carlo simulation for this purpose, we may choose a large n, generate vectors
(z28 j+1, . . . , z28 j+28) for j = 1, . . . , n that simulate independent realizations of (Z1, . . . , Z28) and count,
how many of them satisfy (2). If s is the number of successes, then the resulting estimate is s/n.

If we use a good random number generator, then s/n is 1/32 plus an error decreasing approximately
as 1/

√
32 n. More exactly, the expected value of the result is 1/32 and the standard deviation is√

1/32(1− 1/32)/n. The error has approximately Gaussian distribution due to the central limit
theorem. In particular, if n = 106, the standard deviation is approximately 1/5700. Hence, the error
is less than 1/1000 with high probability.

If we use the default generator in Matlab, the result is 0. This is not a random error. It is a
systematic error, which does not depend on the seed and on the number n of iterations. On the other
hand, the error depends on the particular choice of the indices 1, 16 and 28. For other triples of
indices, everything is correct and the error decreases with 1/

√
32 n as implied by the theory.

3.2 Overestimating probability by a large factor

The next example is derived using the result of Section 5.3, however, a numerical verification is possible
already here. Let k be any integer satisfying 2 ≤ k ≤ 10 and consider the probability that a vector



(Z1, . . . , Z28) chosen uniformly from the unit cube in dimension 28 satisfies the inequalities

0 ≤ Z1 < 1/2k

0 ≤ Z16 < 1/2k

0 ≤ Z28 < 1/2k .
(3)

This probability is obviously 1/23k. Monte Carlo simulation using method ’state’ of rand yields
approximately 1/22k+1 in average. Hence, the result is overestimated by a factor of 2k−1.

Numerical verification is possible for any k in the specified range. For example, if we choose k = 8,
the probability of (3) is overestimated approximately by a factor of 128, which means that generating
106 nonoverlapping vectors yields 7.6 successes in average instead of the correct 0.06 in average.

According to the results of Section 5, the density of the distribution of the triples Z1, Z16, Z28 is
not constant in the region specified by inequalities (3). For any 1 ≤ k ≤ 10 consider inequalities

1/2k+1 ≤ Z1 < 1/2k

1/2k ≤ Z16 < 1/2k−1

1/2k+1 ≤ Z28 < 1/2k ,
(4)

which determine a parallelepiped with edges 1/2k+1, 1/2k and 1/2k+1. By results of Section 5.3, the
density of the distribution in the region specified by (4) is constant and approximately equal to 2k.
Simulation using rand overestimates the probability of the event (4) by a factor of 2k.

3.3 Predicting the magnitude of the next random number

It appears that it is possible to predict with success probability 0.708, whether the next number
generated by rand will be at least 1/2 or not using the history of 27 last values of rand. The prediction
may be computed by evaluating 5 linear inequalities using two out of these 27 numbers and combining
the results by a Boolean operation.

For a good pseudorandom number generator, the success probability of such a prediction is 1/2
or very close to 1/2, since nothing better (and also nothing worse) than a random guess is possible in
an affordable amount of computation time. For linear generators, it is sometimes tolerated, if more
efficient predictions may be done using linear algebra modulo primes, but such predictions are defined
by extremely noncontinuous functions and are unlikely to interfere with a typical numerical problem.

Let us start by reformulating the problem from the introduction in terms of prediction. We already
know that for every i such that 0 ≤ zi+1 < 1/4 and 1/4 ≤ zi+16 < 1/2, we certainly have zi+28 < 1/2.
In order to investigate predictions of this kind systematically, let us consider a map, where the axes
correspond to the values of zi+1 and zi+16 and the colour of a point (zi+1, zi+16) is determined by
the conditional probability of the event zi+28 ≥ 1/2 under the condition that zi+1 and zi+16 have
the given values. The map in Figure 2 approximates such a map using the result of simulating 109

nonoverlapping triples (z28 j+1, z28 j+16, z28 j+28) and plotting the estimated average of the required
conditional probability separately in each cell of a 64 times 64 regular grid of squares, each with edge
1/64. Black colour corresponds to the conditional probability 1/2, which is the correct value. Bright
blue corresponds to conditional probability 0 and bright red corresponds to conditional probability 1.
The conditional probabilities between 0 and 1/2 and between 1/2 and 1 are linearly mapped to the
RGB colours between blue and black and between black and red, respectively.

In particular, the square
0 ≤ zi+1 < 1/4
1/4 ≤ zi+16 < 1/2

is bright blue due to the considerations above. The map, however, shows also other areas, where the
truth value of zi+28 ≥ 1/2 may be predicted (positively or negatively) with certainty. There are also
regions, where a prediction may not be done with certainty, but a prediction with a strong correlation
with zi+28 ≥ 1/2 is possible. In the regions with nonzero degree of blue, it is better to predict 0.
In the regions with nonzero degree of red, it is better to predict 1. In the black regions, there is
not a significant difference between predicting 0 or 1. Using the map, it is easy to determine simple



Figure 2: Map of conditional probabilities Pr(zi+28 ≥ 1/2 | zi+1, zi+16) in a grid of 64× 64 squares of
equal size estimated by numerical simulation.

polygonal boundaries, which separate the regions with prediction 0 from regions with prediction 1. For
example, one may use the following prediction rule. In order to simplify the calculation of correlation,
the prediction of the truth value of zi+28 ≥ 1/2 is transformed into a prediction of the value of
sign(zi+28 − 1/2). Logical values are used in arithmetic expressions as if they are the real numbers 0
and 1.

if zi+1 > zi+16

prediction = 1− 2 (zi+1 > 1/2 & zi+16 < 1/4)
else

prediction = 2 (zi+16 > 1/2 & zi+1 < 1/4)− 1
end

The prediction obtained in this way is equal to sign(zi+28 − 1/2) with probability at least 0.708.
An equivalent formulation is that the mean of

prediction · sign(zi+28 − 1/2) (5)

is at least 0.416. The correct value of this mean is zero, since the two variables that are multiplied
have zero mean and simulate independent variables. Hence, we again have a failure in a Monte Carlo
integration. In this case it is calculating the mean of a function with values −1 and 1, which is constant



on 8 simple nonconvex polygonal regions. The regions are defined by splitting the space with 6 planes
in three coordinates and putting some of the adjacent pieces together. The first 5 planes are those
used in the prediction and the last plane corresponds to the condition 1/2 ≤ zi+28. Then, the value
of the function is specified separately on each of the resulting pieces.

Each of the two random variables prediction and sign(zi+28 − 1/2) individually has a distribution
very close to the uniform one. It is not possible to distinguish their expected values from 0 using
frequencies over runs shorter than the period. Hence, both these quantities may be considered as
random variables with zero mean and unit standard deviation. In other words, the expected value of
(5) is simultaneously the correlation of the two variables, which is at least 0.416, although it should
be 0.

The numerical values may be verified using predict.m presented at [15].

3.4 An estimate of the level of statistical significance

The example of failing Monte Carlo integration from Section 3.1 uses two cubes of edge 1/4, which
have zero density in the joint distribution of zi+1, zi+16, zi+28. In order to identify several further such
cubes, consider constructing a sequence of integers ai = b4 zic. Since the joint distribution has zero
density in the cube

0 ≤ zi+1 < 1/4
1/4 ≤ zi+16 < 1/2
1/2 ≤ zi+28 < 3/4

there is no index i such that (ai+1, ai+16, ai+28) = (0, 1, 2), although the expected number of such
indices in a really random sequence of length n is (n − 27)/64. Besides the missing combination
(0, 1, 2), there are 9 other missing combinations. Using this, one can design a statistical test, which
rejects randomness of the default generator rand at the level 1.4 · 10−9 of statistical significance using
only 390 consecutive numbers. The test uses only the two most significant bits in each number and is
described in the rest of the section.

Assume, we have a sequence of 390 random integers between 0 and 3 and split them into 10
vectors of length 39. Denote the coordinates of any of these vectors (a1, . . . , a39). Consider the 12
triples (ai+1, ai+16, ai+28) for i = 28, . . . , 39 in each of the 10 vectors, i.e. the triples

(a1, a16, a28), . . . , (a12, a27, a39).

It is easy to verify that these triples are disjoint. Considering all the 10 vectors together, we have 120
disjoint triples. Each of the triples has 43 = 64 possible combinations of the values. Let A be the
event that none of these 120 triples contains a combination that belongs to the following list of 10
combinations

(0, 0, 1), (0, 1, 2), (0, 1, 3), (0, 2, 0), (0, 3, 0),
(1, 0, 0), (1, 0, 1), (1, 1, 1), (2, 1, 0), (3, 1, 0).

(6)

The probability of the event A under the null hypothesis, which is the assumption that the input
sequence is a random sequence of independent and uniformly distributed numbers, is (54/64)120 <
1.4 ·10−9. Hence, a test of uniformity of a sequence of pseudorandom numbers may be done as follows:
Consider 390 consecutive numbers from the tested generator and calculate the corresponding numbers
ai = b4 zic. Then, determine for the obtained sequence of 390 integers, whether A occurs or not. If it
occurs, reject the generator on the level of statistical significance 1.4 · 10−9.

If we generate the 390 numbers from the default setting of rand, the event A will always occur,
independently on the seed and the number of repetitions of the experiment. This statement is based
on a large amount of simulations and is proved in Section 4.3 using the definition of the generator. In
this situation, it is not neccessary to present the result of a concrete run of the test as usual in other
situations. It is possible to make a strong statement that whenever the test is performed, it always
rejects the generator. A single repetition of the test rejects the uniformity of the generator on the level
1.4 · 10−9 of statistical significance. Repeating the test makes, of course, the rejection even stronger,
but needs a longer sequence of random numbers.



event type of quantity numerical value
B expected probability q · (19/20) · (35/64)

observed probability 3.7936 · 10−4

ratio obs./exp. 1.000319
C16 expected probability q · (19/20) · (1− 35/64)

observed probability 3.1428 · 10−4

ratio obs./exp. 1.000169
Ck, k 6= 16 expected probability q · (1/20) · (35/64)

minimum observed 1.9937 · 10−5

maximum observed 1.9983 · 10−5

ratio obs./exp. 1 ± 0.0012

Figure 3: Numerical simulation using sample of size 1011.

It is possible to formulate other tests, which use the results of Section 5, for example the region
of zero density of volume 4/21 or the approximated density. Such tests allow to reject the generator
on the same level of significance as above using a sequence of consecutive random numbers of length
smaller than 390. These tests are not presented, since their description is more complex than the
above one.

3.5 Related problem

A related problem, caused by the same property of the default setting of rand, is described at web
pages of MathWorks among Technical Solutions as Solution Number 1-10HYAS, see [13]. The problem
is demonstrated using a sequence of 5 · 107 consecutive numbers generated from rand. This sequence
is split into runs consisting of consecutive numbers which are at least 1/20 and ended by one number
less than 1/20. In the histogram of the frequencies of different lengths of these runs, the point
corresponding to length 27 is visibly below the curve formed by the points for other lengths. The
reason is that length 27 corresponds to the event B defined as

zi+1 < 1/20
zi+j ≥ 1/20 for all j = 2, . . . , 27
zi+28 < 1/20

and the probability of B is smaller than it should be. In order to demonstrate that this is caused
by the dependence between the numbers zi+1, zi+16 and zi+28 discussed in the current paper, let us
consider the approximation of the conditional probability Pr(zi+16 ≥ 1/20 | zi+1 < 1/20, zi+28 < 1/20)
implied by the analysis in Section 5.1. By considering the probability of the intersection of the regions
R(k1, k16, k28) with the event B for all 1 ≤ k1, k16, k28 ≤ 5, it may be verified that in the distribution
defined by (14), we have

Pr(Z16 ≥ 1/20 | Z1 < 1/20, Z28 < 1/20) = 35/64.

Using this, the probability of B may be approximated by q · (19/20) · (35/64), where q = (1/20)2 ·
(19/20)24. The result of a numerical simulation using sample of size 1011 is consistent with this
assumption, see the table in Figure 3.

In order to formulate a stronger test, let us consider the events Ck for k = 2, . . . , 27 defined as

zi+j < 1/20 for j = 1, k, 28
zi+j ≥ 1/20 otherwise .

Note that these events are disjoint with B and they are also mutually disjoint. Using the
assumption that the dependence between (zi+1, zi+16, zi+28) is the only dependence between the



numbers (zi+1, zi+2, . . . , zi+28) and using the results of Section 5.1, we obtain the approximation

Pr(Ck) =

{
q · (19/20) · (1− 35/64) k = 16
q · (1/20) · (35/64) k 6= 16

The result of the numerical simulation using sample of size 1011 is presented in the table in Figure
3. For the events Ck, k 6= 16, the table contains only the minimum and maximum of the observed
probabilities. The obtained numerical results are consistent with the prediction.

4 Explanation of the problem

4.1 A brief description

The default method ’state’ used by rand is a combination of two components: Marsaglia’s subtract
with borrow generator and a 32-bit linear generator modulo 2 (using xor operation). Subtract with
borrow generators were suggested in [9] and are described e.g. in Section 3.6 Linear Recurrences with
Carry of [7].

The numbers generated by the first component, the subtract with borrow generator, have a strong
dependence between xi+1, xi+16 and xi+28, where xi is the i-th element of the sequence. This
dependence is a direct consequence of the formula defining the sequence. A dependence of this kind
may be eliminated, if the output zi of the whole generator is constructed by combining xi with the
output of the second component.

The standard way of combining two generators is to use some group operation. The two simplest
group operations, which may be used, are addition of real numbers modulo 1 (inside the half closed
interval [0, 1)) and the xor operation (addition of the bits modulo 2) applied to the bits of the two
numbers at the same positions in a fixed point representation. Such a combination may provably
eliminate a dependence in a generator, if it is combined with a generator that does not have this
particular dependence, see [6].

Unfortunately, the combination used in rand is not a group operation. It is done by applying
xor operation to the bits in floating point representation and not in fixed point. Floating point
representation uses an exponent to shift the digits so that the first nonzero digit is always at the same
position. Moreover, the first nonzero digit is not explicitly contained in the machine representation.
The combination used in rand constructs the output zi by a xor operation, which adds the bits of the
second component yi to those bits of the mantissa (significand) of xi, which are present in the machine
representation. The result of this operation is the mantissa of the zi. The exponent of xi is preserved
and used as the exponent of zi. Hence, the first nonzero digit of xi and the possible zero digits before
it are not altered. As a consequence, the position of the first nonzero digit in the output zi is the same
as in the subtract with borrow component xi. This similarity in magnitude between xi and zi allows
the strong dependence in xi to be transformed into a slightly weaker, but still very strong dependence
in the output zi.

It is important to note that the selected type of combination guarantees that the mantissa of the
numbers generated by rand consists of 53 random looking bits, even in the cases, when the generated
number is small. Hence, the numbers look random up to the full precision of double. This would
not be true, if the combination of xi and yi is done in fixed point arithmetic, since then the bits of
the order 2−54 and below would always be zero. However, the advantage of this is questionable. For
example, the same is not true for 1− rand, so the user has to be carefull to use this. Moreover, if the
user has a specific reason to use full precision floating point random numbers, then the same effect
may be achieved by combining two consecutive numbers in the sequence appropriately. Hence, the
advantage of having full precision random numbers does not seem to overweight the spectacular loss
in uniformity of the output in dimensions 28 and more.

4.2 An exact description

MathWorks provides an exact description of the default generator among Technical Solutions as
“Solution Number: 1-169M3”, see [14]. At this web page, one may find an m-file randtx.m, which



is, of course, slower than rand, but exactly reproduces the default numerical behaviour of rand. The
statements concerning the structure of the generator, which are formulated in the previous section,
are based on an analysis of this file.

The subtract with borrow generator used in rand is defined by the recurrence

xi = (xi−12 − xi−27 − bi−1) mod 1 (7)

bi =

{
0 if xi−12 − xi−27 − bi−1 ≥ 0
2−53 otherwise

, (8)

where xi are double precision numbers between 0 and 1 − 2−53 of the form m2−53, where m is an
integer, 0 ≤ m ≤ 253 − 1. The mod 1 operator means that its argument is mapped to [0, 1) by adding
an integer. In the recurrence above, its argument is always in [−1, 1), so only adding 1 or 0 may occur.

For the purpose of the current paper, the exact definition of bi is not important and the fact that
for each i either bi = 0 or bi = 2−53 is sufficient. This implies that xi+28 differs from either xi+16−xi+1

or from xi+16 − xi+1 + 1 by at most 2−53. This is a strong dependence.
The second component of the generator used in rand is a linear generator modulo 2 generating

nonzero unsigned 32-bit integers with the period 232 − 1. In each step of the generator, two elements
of this sequence are computed and combined together into a 52-bit integer, which we denote yi.

The exact combination used in rand may be found at the last 4 lines in randtx.m and is as follows.
The resulting number zi is constructed using xi and yi. Let us denote the binary digits after the
decimal point in xi as a1, a2, . . . and the binary digits in yi as b1, b2, . . . Hence, we have

xi = 0. a1 a2 a3 . . . a53 ,
yi = b1 b2 b3 . . . b52 .

If a1 = 1, then
xi = 0. 1 a2 a3 . . . a53 ,
zi = 0. 1 (a2 ⊕ b1) (a3 ⊕ b2) . . . (a53 ⊕ b52) .

where ⊕ denotes addition modulo 2, i.e. the xor operation. If a1 = 0 and a2 = 1, then

xi = 0. 0 1 a3 . . . a53 ,
zi = 0. 0 1 (a3 ⊕ b1) . . . (a53 ⊕ b51) b52 .

In general, the bits of yi are used to modify 52 bits in xi starting at the bit after the first nonzero bit
of xi. Consequently, the positions of the first nonzero bit in zi and xi are the same. Note that this
implies that for every integer k, we have

1/2k ≤ xi < 2/2k (9)

if and only if
1/2k ≤ zi < 2/2k . (10)

This similarity between zi and xi implies that the dependence between xi+1, xi+16 and xi+28 transforms
into a dependence between zi+1, zi+16 and zi+28. This remains true, even if yi are perfect random
numbers.

4.3 Examples of cubes with zero density

In this section, we provide proofs of two statements promissed earlier. The first theorem implies
that the inequalities (1) are never satisfied. This is the example of a nonuniform property of the
investigated generator discussed in the introduction and Section 3.1. The second theorem implies that
the statistical test described in Section 3.4 always rejects the generator, independently of the seed.
Although the second theorem implies the first one, we present both, since the proof of the first one is
simpler.

Let us consider the following consequence of (7). For every i, there is a number b ∈ {0, 2−53}, such
that

xi+28 = (xi+16 − xi+1 − b) mod 1 , (11)



Theorem 1 There is no index i such that the sequence zi of the generator satisfies the inequalities
(1).

Proof. Let us use the notation xi, yi for the two components of the generator as in Section 4.2.
Due to the equivalence between (9) and (10), it is sufficient to prove that the inequalities

0 ≤ xi+1 < 1/4
1/4 ≤ xi+16 < 1/2
1/2 ≤ xi+28 < 1 .

(12)

are never satisfied. By subtracting the first two of them, we obtain

0 < xi+16 − xi+1 < 1/2 .

Since the numbers xi are multiples of 2−53, we have

2−53 ≤ xi+16 − xi+1 < 1/2 .

This implies
0 ≤ xi+16 − xi+1 − b < 1/2 ,

where b is the number from (11). Hence, we have

0 ≤ xi+28 < 1/2 .

This is inconsistent with the last of the inequalities (12) and, hence, the inequalities are never satisfied
simultaneously. 2

For every i, let ai = b4zic. Note that the above theorem implies the following. There is no index i
such that the triple (ai+1, ai+16, ai+28) is equal to (0, 1, 2) or (0, 1, 3), which are the second and third
of the triples (6) considered in Section 3.4. The following theorem extends this to all 10 triples (6).
Hence, the statistical test described in Section 3.4 indeed always rejects the generator, independently
of the seed.

Theorem 2 Then there is no index i such that the triple (ai+1, ai+16, ai+28) is equal to some of the
triples (6).

Proof. We need to work with intervals of values of zi, whose bounds are 0 or a power of 2. Hence,
we consider the values ai = 2 and ai = 3 together, and use the following correspondence of values ai

and intervals
ai zi

0 [0, 1/4)
1 [1/4, 1/2)
2, 3 [1/2, 1) .

Using this, the 10 triples (6) correspond to 7 Cartesian products of intervals of values of
(zi+1, zi+16, zi+28) as follows. The 4 triples consisting only of 0,1 correspond directly to products
of appropriately selected intervals [0, 1/4) and [1/4, 1/2). For example, the triple (1, 0, 1) corresponds
to [1/4, 1/2)× [0, 1/4)× [1/4, 1/2). The remaining 6 triples containing also 2 or 3 are combined into
pairs that correspond to products of intervals as follows

(ai+1, ai+16, ai+28) (zi+1, zi+16, zi+28)
(0, 1, 2), (0, 1, 3) [0, 1/4)× [1/4, 1/2)× [1/2, 1)
(0, 2, 0), (0, 3, 0) [0, 1/4)× [1/2, 1)× [0, 1/4)
(2, 1, 0), (3, 1, 0) [1/2, 1)× [1/4, 1/2)× [0, 1/4) .



Let [r1, s1) × [r16, s16) × [r28, s28) be any of the obtained 7 products of intervals. The triple
(zi+1, zi+16, zi+28) belongs to it iff

r1 ≤ zi+1 < s1

r16 ≤ zi+16 < s16

r28 ≤ zi+28 < s28 .

Due to the equivalence between (9) and (10), this system of inequalities has a solution if and only if
the system

r1 ≤ xi+1 < s1

r16 ≤ xi+16 < s16

r28 ≤ xi+28 < s28

(13)

has a solution. By a calculation similar to the one in the proof of Theorem 1 the first two inequalities
imply

r16 − s1 ≤ x16 − x1 − b < s16 − r1 ,

where b is the number from (11). Hence, we have

xi+28 ∈ [r16 − s1, s16 − r1) ∪ [r16 − s1 + 1, s16 − r1 + 1) .

It is possible to verify that this is inconsistent with xi+28 ∈ [r28, s28) for each of the 7 considered
products [r1, s1)× [r16, s16)× [r28, s28). This completes the proof. 2

5 Density of the distribution

5.1 Approximating distribution

The analysis of the combination of xi and yi presented above may be used to describe a simple
distribution on three numbers (Z1, Z16, Z28), which is a good approximation of the joint distribution of
(zi+1, zi+16, zi+28). The approximation is obtained by the following changes in the recurrence relations
defining the generator:

• the distribution of xi+1, xi+16 and yi+1, yi+16, yi+28 is assumed to be uniform of [0, 1) and these
numbers are assumed to be independent.

• the number xi+28 is determined by (7), where we assume bi+27 = 0.

Besides this, the combination of xi+1, xi+16, xi+28 and yi+1, yi+16, yi+28 to obtain zi+1, zi+16, zi+28 is
done in the same way as in rand, which is described in Section 4.2.

For convenience of the reader, let us describe the approximating distribution in a self-contained
manner. Let (X1, X16, X28) be a random vector with the uniform distribution on the intersection of
the unit cube with the two planes defined by

X28 = X16 −X1

X28 = X16 −X1 + 1 .

A random point (X1, X16, X28) distributed uniformly over this intersection may be generated by taking
(X1, X16) from the uniform distribution on the unit square and setting X28 = (X16 −X1) mod 1.

Let (Y1, Y16, Y28) be chosen from the uniform distribution on [0, 1)3. The numbers are used as
infinite sequencies of random bits. If the first 52 of these bits in each of the three numbers are used as
a binary representation of an integer, then we have a distribution that has the same range of values as
the numbers (yi+1, yi+16, yi+28), but is uniform on all triples of 52 bit numbers. The original numbers
are not uniform simply because we have only 232−1 combinations, which is much less than the needed
2156. However, nonuniformity of the triples (yi+1, yi+16, yi+28) is not the reason for the discussed
problem, so we neglect it.



Combination of (X1, X16, X28) and (Y1, Y16, Y28), which generates the resulting vector (Z1, Z16, Z28)
is done by adding modulo 2 the digits of the number Yi startig at the first position after the decimal
point to the digits of Xi starting after the first nonzero digit. Since we assume that Y1, Y16, Y28 are
independent and uniformly distributed, we may describe the combination as an application of the same
randomized rule to each of the three numbers of (X1, X16, X28) independently. The rule is described
in the next paragraph.

Let Xi for i = 1, 16, 28 be the original number and let ki be the integer such that Xi belongs to the
half open interval [1/2ki , 2/2ki). Since we assume that Yi is uniformly distributed and independent
from other random variables used in the construction, the digits of Xi that are after the first nonzero
digit have no influence on the distribution of the result and may be discarded. Hence, the resulting
number Zi belongs to the same interval [1/2ki , 2/2ki) as Xi, but is uniformly distributed in this
interval. Note that ki is the common position of the first nonzero digit in Xi and Zi. Hence, the
resulting combination of Xi and Yi has the same distribution as 2ki(1 + Ui) = 2blog2(Xi)c (1 + Ui),
where Ui is uniformly distributed in [0, 1) and independent from other numbers in the construction.

Let us summarize the construction of the approximation. The input are five uniformly distributed
independent numbers X1, X16, U1, U16, U28 from the interval [0, 1). Then

X28 = (X16 −X1) mod 1
Z1 = 2blog2(X1)c (1 + U1)
Z16 = 2blog2(X16)c (1 + U16)
Z28 = 2blog2(X28)c (1 + U28) .

(14)

The distribution of the resulting triple (Z1, Z16, Z28) is a good approximation of the distribution of
(zi+1, zi+16, zi+28). An empirical verification of the closeness of the two distributions is presented in
Section 5.4.

The density of the approximating distribution may be calculated in any given point in the unite
cube. The rest of the section is devoted to a description of this calculation. It follows from (14)
that for any natural numbers k1, k16, k28 ≥ 1, the distribution of the point (Z1, Z16, Z28) has constant
density on each of the regions R(k1, k16, k28), where R(k1, k16, k28) is the set of points satisfying the
inequalities

1/2k1 ≤ Z1 < 2/2k1

1/2k16 ≤ Z16 < 2/2k16

1/2k28 ≤ Z28 < 2/2k28 .

In order to match the real generator, using numbers k1, k16, k28 above 53 is not meaningful. However,
for the sake of simplicity of the description of the approximation, we work with a model, where
k1, k16, k28 are not bounded from above.

For every k1, k16, k28 ≥ 1, let

p(k1, k16, k28) = Pr[(Z1, Z16, Z28) ∈ R(k1, k16, k28)] .

Since the randomization rule using Ui preserves the regions R(k1, k16, k28), we have

p(k1, k16, k28) = Pr[(X1, X16, X28) ∈ R(k1, k16, k28)] .

For every r ∈ {0, 1}, let D(k1, k16, k28, r) be the event

1/2k1 ≤ X1 < 2/2k1

1/2k16 ≤ X16 < 2/2k16

1/2k28 ≤ X16 −X1 + r < 2/2k28 .
(15)

Moreover, let
pr(k1, k16, k28) = Pr[D(k1, k16, k28, r)] . (16)

Note that D(k1, k16, k28, r) is a predicate depending only on X1, X16. The predicate is satisfied inside
a simple convex polygonal region in the unit square, which is the set of values of X1, X16 satisfying



k1 k28 k16 = 1 k16 = 2 k16 = 3 k16 ≥ 4
1 1 1 1.5 0.75 0.25
2 1 0.5 1 2 2
1 2 0.5 1 2 2
3 1 1.25 0 1 2
2 2 2 0 0 0
1 3 1.25 0 1 2
3 2 1.5 1 0 0
2 3 1.5 1 0 0
3 3 0 4 0 0

≥ 4 1 1.75 0 0 1
1 ≥ 4 1.75 0 0 1

≥ 4 2 0.5 3 0 0
2 ≥ 4 0.5 3 0 0

≥ 4 3 0 2 4 0
3 ≥ 4 0 2 4 0

≥ 4 ≥ 4 0 0 4 4

Figure 4: Density in some of the regions R(k1, k16, k28) and average density in some of their infinite
unions.

(15). Hence, the probability of the event D(k1, k16, k28, r) may easily be computed using elementary
analytical geometry.

Using the definition of X28, we obtain

(X1, X16, X28) ∈ R(k1, k16, k28) ⇐⇒ D(k1, k16, k28, 0) ∨D(k1, k16, k28, 1) .

Moreover, the events D(k1, k16, k28, 0) and D(k1, k16, k28, 1) cannot occur simultaneously, since
otherwise 1/2k28 + 1 < 2/2k28 , which is not possible, since k28 ≥ 1. Hence, we have

p(k1, k16, k28) = p0(k1, k16, k28) + p1(k1, k16, k28) . (17)

The density of the distribution defined by (14) is constant within the region R(k1, k16, k28). Hence,
this density is 2k1+k16+k28p(k1, k16, k28), which is the ratio of the probability and the volume of
R(k1, k16, k28).

Using (15), (16) and (17), it is possible to calculate the density in any region R(k1, k16, k28)
for given numbers k1, k16, k28. We do not present more explicit formulas, however, we present
examples of the calculated densities. Table in Fig. 4 contains densities in the regions R(k1, k16, k28)
for 1 ≤ k1, k16, k28 ≤ 3. These regions cover the points Z1, Z16, Z28 in the unite cube, where
min{Z1, Z16, Z28} ≥ 1/4. For completeness of the table, it contains also average densities over several
further areas covering the remaining parts of the unite cube. These are infinite unions of R(k1, k16, k28),
where one or more of the indices ki ranges over all numbers ki ≥ 4. The densities in these additional
regions are not constant. However, since each of these additional regions R′ is a union of R(k1, k16, k28)
for an appropriate set of indices, we again have

Pr[(Z1, Z16, Z28) ∈ R′] = Pr[(X1, X16, X28) ∈ R′]

as in the case of individual regions R(k1, k16, k28). This allows to calculate these probabilities using a
finite calculation by generalizing the approach above. The details are not presented.

5.2 Zero density

Using (15), (16) and (17), it is possible to identify the region of zero density in the distribution defined
by (14). The volume of this region is 4/21. The rest of this section is devoted to the proof of this fact.



The range of X16 −X1 + r, if X1, X16 satisfy the first two conditions in (15), is the interval(
1

2k16
− 2

2k1
+ r,

2
2k16

− 1
2k1

+ r

)
.

Hence, the event (15) is satisfied by at least one pair of values of X1, X16, if and only if

1
2k1

− 2
2k16

+
1

2k28
< r

2
2k1

− 1
2k16

+
2

2k28
> r .

(18)

Note that under these conditions, the probability of (15) is positive. Using this, we obtain the following.

Lemma 1 For every k1, k16, k28 ≥ 1, p(k1, k16, k28) is positive iff at least one of the two following
conditions is satisfied:

1
2

< 2k16−k1 + 2k16−k28 < 2 , (19)

2k16−k1 + 2k16−k28 > 2k16−1 +
1
2

. (20)

Moreover, these two conditions are never satisfied simultaneously.

Proof. If r = 0, then (18) is equivalent to (19). If r = 1, then (18) is equivalent to (20). If both
(19) and (20) are satisfied, then 2k16−1 + 1

2 < 2, which implies k16 = 1. Then 2 > 21−k1 + 21−k28 > 3
2 ,

which is not possible, since k1 and k28 are integers. 2

Theorem 3 The sum of the volumes of areas R(k1, k16, k28) with zero density is 4/21.

Proof. We will prove that the sum of volumes of areas R(k1, k16, k28) satisfying (19) is 11/28 and
satisfying (20) is 5/12. Hence, zero density is in volume 1− 11/28− 5/12 = 4/21.

Let us prove the above statements. The situations, where condition (19) is satisfied, consist of the
five mutually exclusive cases listed in the following table.

case k1 k16 k28 volume
k1 = k28 ∧ k16 = k1 − 1 i + 1 i i + 1 1/28
k1 < k28 ∧ k16 = k1 i i i + j 1/7
k1 < k28 ∧ k16 = k1 − 1 i + 1 i i + j + 1 1/28
k1 > k28 ∧ k16 = k28 i + j i i 1/7
k1 > k28 ∧ k16 = k28 − 1 i + j + 1 i i + 1 1/28

In each row, a parametrization of all k1, k16, k28 satisfying the corresponding condition is given
using integer parameters i, j ≥ 1. Using this parametrization, the sum of 1/2k1+k16+k28 over the triples
in the given row may be calculated using one of the identities∑

i,j≥1

1
2αi+j+β

=
∑
i≥1

1
2αi+β

=
1

(2α − 1)2β
.

For example, in the first row, we have k1 + k16 + k28 = αi + β = 3i + 2, which yields volume 1/28. In
the second row, we have k1 + k16 + k28 = αi + j + β = 3i + j, which yields volume 1/7.

Similarly, for condition (20), we obtain the following three cases

case k1 k16 k28 volume
k1 = 1 ∧ k28 = 1 1 i 1 1/4
k1 = 1 ∧ k28 ≥ 2 ∧ k16 ≥ k28 1 i + j i + 1 1/12
k1 ≥ 2 ∧ k28 = 1 ∧ k16 ≥ k1 i + 1 i + j 1 1/12

Summarizing the results finishes the proof. 2



5.3 High density

Let k ≥ 1 be an integer. Using (14), we obtain that Z1 < 1/2k, Z16 < 1/2k iff X1 < 1/2k, X16 < 1/2k.
Hence, the conditional probability

Pr(Z28 < 1/2k | Z1 < 1/2k, Z16 < 1/2k)

is equal to
Pr(Z28 < 1/2k | X1 < 1/2k, X16 < 1/2k) .

If we extend the condition by the assumption X1 < X16, then the condition implies 0 < X28 < 1/2k

and, hence, 0 < Z28 < 1/2k with certainty. On the other hand, if X1 > X16, then 0 < Z28 < 1/2k is
never satisfied. Hence,

Pr(Z28 < 1/2k | Z1 < 1/2k, Z16 < 1/2k) =
1
2

.

This implies that

Pr(Z1 < 1/2k, Z16 < 1/2k, Z28 < 1/2k) =
1

22k+1
.

This proves the statement concerning the event (3) in Section 3.2. Under the uniform distribution,
the probability of the same event is 1/23k. Hence, the probability in the model (14) is larger by a
factor of 2k−1 than in the uniform distribution.

The density in the region used above is not constant. Consider the event (4) from Section 3.2. By
(17), its probability may be expressed as p(k + 1, k, k + 1) = p0(k + 1, k, k + 1) + p1(k + 1, k, k + 1).
The system of inequalities (15) corresponding to p0(k + 1, k, k + 1) is

1/2k+1 ≤ X1 < 1/2k

1/2k ≤ X16 < 1/2k−1

1/2k+1 ≤ X16 −X1 < 1/2k .

Note that the second inequality is the sum of the first and the third one. Hence, the second inequality
may be omitted. The solution of the remaining two inequalities may be parametrized as

X1 = t

X16 = s + t

where t, s ∈ [1/2k+1, 1/2k). Hence, the area of the set of solutions is 1/22k+2. The system of inequalities
(15) corresponding to p1(k + 1, k, k + 1) is not satisfiable. Hence, the probability of (4) is 1/22k+2,
while the correct value is 1/23k+2. Since the density in this region is constant, both the probability
and the density are larger by a factor of 2k than in the uniform distribution.

5.4 Numerical simulation

Since the model (14) is only an approximation, the density of the distribution defined by (14) has
been compared with estimates of the density of the original generator based on numerical simulation.
The default method of rand was used to generate samples of nonoverlapping triples (Z1, Z16, Z28) of
sizes 109, 1010 and 1011 in Matlab. The unit cube was partitioned into a grid of 643 disjoint cubes of
edge 1/64. Then, the number of the generated triples that fall into each of these cubes was counted.
The obtained frequencies were compared to the expected value derived from (14).

There are n0 = 49910 cells among the 643 cells described above, which have zero probability in
the model (14). These n0 cells are exactly the cells, where the actual observed frequency was 0. Only
cells with positive probability in the model were used for further tests.

We used two types of tests. First, the standard χ2 test with N = 643 − n0 classes was used. This
test did not detect a significant difference between expected and observed frequencies. The p-values
are presented in the table in Fig. 5.



sample size χ2 p-val (χ2) D+ D−

109 211196.7 0.944323 0.002864007 0.003117393
109 212890.8 0.1563487 0.002058352 0.004033333
109 211706.2 0.7904987 0.002284093 0.004099419
109 212135.4 0.5591362 0.00223734 0.002803002
1010 211043.7 0.9662099 0.001746556 0.001839517
1010 212714.4 0.2298325 0.001603772 0.001746639
1011 212018.3 0.6288094 0.001368394 0.001015529
1011 213030.5 0.1105557 0.001527936 0.001700189

Figure 5: Results of numerical comparison of the predicted density with the density of numbers
generated from rand.

Using the usual notation, the χ2 statistic is calculated as

N∑
i=1

(Oi − Ei)2

Ei

Under the null hypothesis, the numbers
Oi − Ei√

Ei
(21)

should be distributed approximately as in the normal distribution N(0, 1). Since the number of classes
N is quite large, we may afford to test, whether the numerical results correspond to this assumption.
For this purpose, we calculated the KS test statistics for the numbers (21) obtained for several samples
of triples of different sizes. The statistics are denoted D+ and D− and are the maximum positive and
the maximum negative difference between the sample distribution function of the numbers (21) and
the distribution function of N(0, 1). These statistics are presented in the table in Figure 5.

The p-value of the standard KS test may not be computed in this case, since the numbers (21)
contain a lot of ties. The reason for these ties is that many cells have the same expected number of
hits and if this expected number is small, then some part of these cells gets also the same observed
frequency. This implies the same value of (21). However, the differences between the two distribution
functions are quite small and this confirmes a good correspondence between the prediction and the
simulation results.

6 Random number generators and computational complexity

From the point of view of computational complexity, a generator is good, if its output is not
distinguishable from a random sequence in polynomial time. Such a generator is called polynomially
secure and existence of such generators is consistent with the current knowledge of complexity theory.
On the other hand, proving that polynomially secure generators do exist is beyond the reach of the
known methods, since existence of such a generator implies P6=NP and even more.

Let us present a slightly simplified definition of a polynomially secure pseudorandom generator
used e.g. in monographs [1] Chapter 3, [2], [8].

A generator of pseudorandom bits is a function g : {0, 1}s → {0, 1}n, where s is the length of the
seed. It is assumed that the seed x is a truly random sequence with uniform distribution on {0, 1}s

and g(x) is the resulting pseudorandom vector of length n. Since increasing lengths n of the generated
sequence are considered, it is assumed that s = s(n) may depend on n.

In order to formalize the notion of a statistical test of randomness, assume a function T : {0, 1}n →
{0, 1} computable in polynomial time and call it a test. The generator g passes the test T , if for every
c > 0 and n →∞, we have ∣∣∣∣Pr

x
[T (g(x)) = 1]− Pr

y
[T (y) = 1]

∣∣∣∣ = O

(
1
nc

)
,



where x is chosen from the uniform distribution on {0, 1}s and y is chosen from the uniform distribution
on {0, 1}n.

The generator g is called a polynomially secure pseudorandom generator, if it passes every
polynomial time computable test.

Acknowledgement. The author would like to thank to Martin Dietzfelbinger, Martin Holena, Jan
Klaschka, Pavel Pudlak and Jiri Sgall for helpful comments concerning preliminary versions of the
paper.

References

[1] O. Goldreich, Modern Cryptography, Probabilistic Proofs and Pseudorandomness. Springer-Verlag,
Algorithms and Combinatorics, Vol 17, 1998.

[2] O. Goldreich, Lecture Notes on Pseudorandomness - Part I (polynomial-time generators), 2000.
Online version available at
http://www.wisdom.weizmann.ac.il/~oded/c-indist.html

[3] P. Hellekalek, S. Wegenkittl, Empirical evidence concerning AES. ACM Transactions on Modeling
and Computer Simulation (TOMACS), 13, 4 (2003), pp. 322–333.

[4] D. E. Knuth, The Art of Computer Programming, Volume 2: Seminumerical Algorithms, 3rd
Edition, Addison-Wesley, Reading, Mass., 1998.

[5] P. L’Ecuyer, Good Parameter Sets for Combined Multiple Recursive Random Number Generators,
Shorter version in Operations Research, 47, 1 (1999), 159–164.

[6] P. L’Ecuyer and J. Granger-Pich. Combined Generators with Components from Different Families,
Mathematics and Computers in Simulation, 62 (2003), pp. 395–404.

[7] P. L’Ecuyer. Random Number Generation, Chapter 3 of Elsevier Handbooks in Operations
Research and Management Science: Simulation, S. G. Henderson and B. L. Nelson, eds., Elsevier
Science, to appear in 2006.

[8] M. Luby. Pseudorandomness and Cryptographic Applications. Princeton University Press, 1996.

[9] G. Marsaglia, A. Zaman, A new class of random number generators. The Annals of Applied
Probability, 1, pp. 462–480.

[10] M. Matsumoto and T. Nishimura. Mersenne Twister: A 623-dimensionally equidistributed
uniform pseudorandom number generator. ACM Trans. on Modeling and Computer Simulation
Vol. 8, No. 1, January pp.3-30 (1998).

[11] F. Panneton, P. L’Ecuyer, and M. Matsumoto, Improved Long-Period Generators Based on Linear
Recurrences Modulo 2, ACM Transactions on Mathematical Software, 32, 1 (2006), pp. 1-16.

[12] The pLab project. Random Number Generators.
http://random.mat.sbg.ac.at

[13] Technical Solutions for Matlab, Solution Number: 1-10HYAS:
http://www.mathworks.com/support/solutions/data/1-10HYAS.html?solution=1-10HYAS

[14] Technical Solutions for Matlab, Solution Number: 1-169M3:
http://www.mathworks.com/support/solutions/data/1-169M3.html?solution=1-169M3

[15] Additional information to the current paper.
http://www.cs.cas.cz/~savicky/prng

http://www.wisdom.weizmann.ac.il/~oded/c-indist.html
http://random.mat.sbg.ac.at
http://www.mathworks.com/support/solutions/data/1-10HYAS.html?solution=1-10HYAS
http://www.mathworks.com/support/solutions/data/1-169M3.html?solution=1-169M3
http://www.cs.cas.cz/~savicky/prng

	Introduction
	General remarks
	Failures in Monte Carlo integration
	An event with positive probability never occurs
	Overestimating probability by a large factor
	Predicting the magnitude of the next random number
	An estimate of the level of statistical significance
	Related problem

	Explanation of the problem
	A brief description
	An exact description
	Examples of cubes with zero density

	Density of the distribution
	Approximating distribution
	Zero density
	High density
	Numerical simulation

	Random number generators and computational complexity

