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Abstract

A reconstruction of an image by application of the discrete inverse Radon trans-
form realized by the function iradon of MATLAB may be unrealistic if the input
data are represented by a small number of the the image projections. To enhance
the result, the set of input projections is extended, including additional virtual
projections obtained from the former by a trigonometrical interpolation.

1 Introduction

The inverse Radon transform reconstructs an image from its projections along various directions.
A discrete variant of the inverse Radon transform is realized by function iradon involved in
Image Processing Toolbox of MATLAB. The paper is based upon experience with the usage of
iradon in connection with diagnostics of plasma radiation [1].

The intent is to determine the distribution of radiation intensity in a plasma jet. It cannot
be measured directly but it can be reconstructed from orthogonal projections of the radiation
into planes outside the plasma jet and parallel to the plasma torch axis and placed at the same
distance from it. (Mathematically, the integral of radiation intensity along a perpendicular to a
projection plane is the side-on intensity in the projection plane at the foot of the perpendicular.)
Introduce cylindrical coordinates (r, θ, z) such that the z-axis coincides with the torch axis.
There exists R > 0 such that the radiation intensity vanishes if r ≥ R. Denote p(θ) the projection
plane such that the angle of the direction of its normals is θ. To describe the projections,
Cartesian coordinates (x, z′) are introduced in every plane p(θ) such that z′ is the projection of
z-axis into p(θ). Fixing a value of z-coordinate, we restrict ourselves to a specified plasma layer
perpendicular to the torch axis.
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Figure 1: Scheme of detecting side-on intensity profiles of a layer of radiating plasma

To record a side-on profile of the radiation intensity, the light emitted by the plasma is
projected by lens onto a detector—e.g. CCD sensor in a projection plane; see Figure 1. If there
is a sufficient number of the side-on profiles at our disposal, we can apply a discrete inverse
Radon transform to reconstruct mathematically the distribution of radiation intensity in the
layer of the plasma jet. For this purpose, the function iradon, involved in MATLAB, can be
applied. The more side-on profiles, the more accurate result; a serious difficulty may arise if the
number of detected side-on profiles is very small.



2 Method

Consider an increasing succession of K + 1 angles θk equidistantly spread on the interval [0, π]
such that the angles θ1 and θK+1 coincide with the endpoints of this interval, and construct K
projection planes p(θk), k = 1, 2, . . . ,K. Given a positive integer N , let I(· ; θk) denote an N -th
degree polynomial on [−R,R] that approximates the side-on profile detected in the projection
plane p(θk) so that

I(x; θk) =
N∑

i=0

ci(θk)xi for θk =
π(k − 1)

K
, −R ≤ x ≤ R , k = 1, 2, . . . , K . (1)

To determine the coefficients ci(θk), the function polyfit involved in MATLAB can be applied.
Note that polyfit uses the least squares method. Attention should be paid to the choice of the
degree N of the approximating polynomial:

• if it is too small, the approximation does not correspond to the shape of the detected side-on
profile properly,
• if it is too large, the graph of the approximation tracks the measured data points so that effect
of possible errors of the measurements at individual data points is included.

Even if the polynomial approximation is satisfactory enough at the data points, there may
appear unrealistic oscillations between them. Such an effect can be frequently observed near the
ends of side-on profiles. To avoid such a behaviour, between the data points some interpolated
values may be added. Figures 2–4 demonstrate polynomial approximations of a certain side-on
profile for various N , using only measured data points (a) or using refined data points consisting
of both measured and interpolated values (b, c). The interpolated values are not drawn.

Let us extend the set of angles θk to be defined also for k = K + 1,K + 2, . . . , 2K, setting
θK+k = θk + π, k = 1, 2, . . . ,K. In addition to the projection planes p(θk), k = 1, 2, . . . , K
let us consider also “virtual” projection planes p(θk), k = K + 1,K + 2, . . . , 2K. The side-on
profiles in planes p(θk) and p(θk +π) are mutually flipped; in accordance with this fact we define
I(x, θk) = I(−x, θK+k) , −R ≤ x ≤ R , k = 1, 2, . . . , K. Therefore,

N∑

i=0

ci(θk)xi =
N∑

i=0

ci(θK+k)(−1)ixi , −R ≤ x ≤ R , k = 1, 2, . . . , K . (2)

An approximation of the side-on profile for an arbitrary angle θ will be sought in the form

I(x; θ) =
N∑

i=0

ci(θ)xi , −R ≤ x ≤ R (3)

where ci are smooth functions; they are required 2π-periodic since projection planes do not
change their position when rotated by an integer multiple of 2π around the torch axis. Further-
more, the values of ci at the points θk must be equal to the values ci(θk), respectively, for each
k = 1, 2, . . . , 2K. Therefore, it is natural to define the function ci(θ) on the interval [0, 2π) as a
trigonometrical interpolation of the data ci(θk), k = 1, 2, . . . , 2K. Following [2]

ci(θ) = 1
2ai0 +

K−1∑

m=1

(aim cos mθ + bim sin mθ)+ 1
2aiK cos Kθ , i = 0, 1, . . . , N, 0 ≤ θ < 2π (4)

where

aim =
1
K

2K∑

k=1

ci(θk) cos mθk , i = 0, 1, . . . , N, m = 0, 1, . . . , K

and

bim =
1
K

2K∑

k=1

ci(θk) sin mθk , i = 0, 1, . . . , N, m = 1, 2, . . . , K − 1 .



a b c

Figure 2: Measured data points of a side-on profile (circles) and relevant polynomial
approximation (lines) for N = 7; a—only measured data points, b—measured + interpolated

data points (1 interpolated value between each pair of neighbouring measured values),
c—measured + interpolated data points (3 interpolated values between 1st and 2nd

measured data points, 1 interpolated value between 2nd and 3rd measured data points,
and similarly at the other end of profile)

a b c

Figure 3: Measured data points of a side-on profile (circles) and relevant polynomial
approximation (lines) for N = 10; for a, b, and c see the legend in caption to Figure 2

a b c

Figure 4: Measured data points of a side-on profile (circles) and relevant polynomial
approximation (lines) for N = 13; for a, b, and c see the legend in caption to Figure 2



Considering the relation ci(θK+k) = (−1)ici(θk), k = 1, 2, . . . ,K, which follows from (2), and
the relations cos mθ = (−1)m cos m(π + θ), sin mθ = (−1)m sin m(π + θ) that hold for every
integer m, we can rewrite the formulas for aim and bim in the form

aim =
1 + (−1)i+m

K

K∑

k=1

ci(θk) cos mθk , i = 0, 1, . . . , N, m = 0, 1, . . . , K

and

bim =
1 + (−1)i+m

K

K∑

k=1

ci(θk) sin mθk , i = 0, 1, . . . , N, m = 1, 2, . . . ,K − 1 ,

or, using a more vivid notation,

aim =





2
K

K∑

k=1

ci(θk) cos mθk if i + m is even ,

0 if i + m is odd ,

i = 0, 1, . . . , N, m = 0, 1, . . . , K (5)

and

bim =





2
K

K∑

k=1

ci(θk) sin mθk if i + m is even ,

0 if i + m is odd ,

i = 0, 1, . . . , N, m = 1, 2, . . . ,K − 1 . (6)

The formula (3) represents approximations for side-on profiles in directions related to angles
0 ≤ θ < 2π; the appropriate coefficients ci(θ) are given by (4) with (5) and (6). Practical
usage of these formulas consists in the following. Picking a positive integer M , the system of
approximate side-on profiles is extended to

I(x; θl) =
N∑

i=0

ci(θl)x
i for θl =

π(l − 1)
MK

, −R ≤ x ≤ R , l = 1, 2, . . . ,MK . (7)

Note that the system (1) of approximations to the measured profiles is thus included in the
refined system (7).

Practically, we apply the procedure iradon successively with M = 2j discretized side-on
profiles where j = 0, 1, 2, . . . . (Note that for j = 0, just the K input side-on profiles arising from
measurement are used.) Increasing j by 1, the number of input profiles is doubled. As soon as
the difference between the reconstructed radiation intensity in the last two steps is negligible,
the process can be finished.

3 Example

Consider a model radiation intensity whose isolines are presented on Figure 5a. Using the dis-
crete (forward) Radon transform realized by the function radon contained in MATLAB environ-
ment, side-on profiles simulating measured values are obtained. The first of them, corresponding
to the angle θ = 0, is represented by circles on Figures 5b and 5c. Polynomial approximations
are constructed for N = 10; on the former picture using only the considered data points, on the
latter also interpolated values between them. Only such enhanced approximations of profiles
are employed in the sequel. Reconstructions of the model radiation intensity are performed
following the presented method. On Figure 6 we start with two simulated profiles (a), then we
add two (b) and six (c) interpolated profiles. Evidently, the reconstruction on the first picture
is quite useless, while those on the other pictures are improved considerably. Now we repeat the
process starting with more simulated profiles: Figure 7 shows the results for four simulated pro-
files (a) and also for these profiles with four (b) and twelve (c) additional interpolated ones. The



reconstruction on the first picture is still unsatisfactory (even though better than on Figure 6a),
but the reconstructions using the interpolated profiles now match the original model.

a b c

Figure 5: Model radiation intensity; a—isolines, b—polynomial approximation (line) of side-on
profile for θ1 = 0 using only data points obtained by forward Radon transform (circles),

c—enhanced polynomial approximation (line) of the same profile using the former data points
and interpolated values

a b c

Figure 6: Reconstruction of radiation intensity by iradon; a—2 simulated side-on profiles,
b—2 simulated + 2 interpolated side-on profiles, c—2 simulated + 6 interpolated side-on profiles

a b c

Figure 7: Reconstruction of radiation intensity by iradon; a—4 simulated side-on profiles,
b—4 simulated + 4 interpolated side-on profiles, c—4 simulated + 12 interpolated side-on

profiles



4 Conclusion

An application of the inverse Radon transform to projections of an image realizes the image
reconstruction. A discrete variant of the algorithm can be carried out by the function iradon
involved in the programming environment MATLAB. However, the result may be unrealistic if
the number of the projections is small. The paper concerns a possibility of improving the result.
The method consists in increasing the number of input side-on profiles by constructing additional
fictive profiles corresponding to other directions of projecting; the recorded data of measured
profiles are approximated by polynomials (of the same degree) and then a trigonometrical in-
terpolation of their coefficients leads to polynomial approximations of the fictive projections.
Although the interpolated profiles do not add a new information on the recorded side-on data,
the use of them may enhance the result of reconstruction, which was demonstrated by a model
example.
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E-mail: chvala@it.cas.cz


