CONSTITUTIVE MATERIAL MODEL OF FIBER-REINFORCED COMPOSITES AT FINITE STRAINS IN COMSOL MULTIPHYSICS

Hoang Sy Tuan, B. Marvalova

Technical University of Liberec, Czech Republic

Constitutive equations of anisotropic hyperelasticity

The free energy for the material with one family of fiber is:

$$\Psi = \Psi (\mathbf{C}, \mathbf{A}_0) \qquad \mathbf{A}_0 = \mathbf{a}_0 \otimes \mathbf{a}_{0'} |\mathbf{a}_0| = 1.$$
$$\Psi = \Psi [I_1(\mathbf{C}), I_2(\mathbf{C}), I_3(\mathbf{C}), I_4(\mathbf{C}, \mathbf{a}_0), I_5(\mathbf{C}, \mathbf{a}_0)]$$

For the two families of fibers, the free energy is

$$\Psi = \Psi (\mathbf{C}, \mathbf{A}_{0}, \mathbf{B}_{0}) \qquad \mathbf{A}_{0} = \mathbf{a}_{0} \otimes \mathbf{a}_{0}, \ \mathbf{B}_{0} = \mathbf{b}_{0} \otimes \mathbf{b}_{0}.$$
$$\Psi = \Psi \Big[I_{1} (\mathbf{C}), I_{2} (\mathbf{C}), I_{3} (\mathbf{C}), I_{4} (\mathbf{C}, \mathbf{a}_{0}), I_{5} (\mathbf{C}, \mathbf{a}_{0}), I_{6} (\mathbf{C}, \mathbf{b}_{0}), I_{7} (\mathbf{C}, \mathbf{b}_{0}), I_{8} (\mathbf{C}, \mathbf{a}_{0}, \mathbf{b}_{0}) \Big]$$

Constitutive equations of anisotropic hyperelasticity

$$\Psi = \Psi_{vol} \left(J \right) + \Psi_{iso} \left(\overline{I_1}, \overline{I_2} \right) + \Psi_{ani} \left(\overline{I_\alpha} \right)$$
$$\overline{I_1} = J^{-2/3} I_1 \qquad \overline{I_2} = J^{-4/3} I_2$$

$$\overline{I_a} = J^{-2/3} I_a$$
 for a=4,6,8; $\overline{I_a} = J^{-4/3} I_a$ for a=5,7.

$$\mathbf{S} = 2\frac{\partial \Psi}{\partial \mathbf{C}} = \mathbf{S}_{vol} + \mathbf{S}_{iso} + \mathbf{S}_{ani}$$

Some forms of the free energy function

Volumetric part

$$\Psi_{vol}(J) = \frac{\kappa}{2}(J-1)^2$$

$$\Psi_{vol}(J) = \kappa \mathcal{G}(J)$$

$$\mathcal{G}(J) = \beta^{-2} \left(\beta \ln J + J^{-\beta} - 1\right)$$
$$\mathcal{G} = \frac{1}{4} \left(J^2 - 1 - 2\ln J\right) \quad \text{for } \beta = -2$$

Some forms of the free energy function

Isotropic isochoric part

$$\Psi_{iso} = \frac{\mu}{2} \left(\overline{I_1} - 3 \right)$$

Mooney-Rivlin:
$$\Psi_{iso} = c_{10} \left(\overline{I_1} - 3\right) + c_{01} \left(\overline{I_2} - 3\right)$$

Ogden:
$$\Psi_{iso} = \Psi(\overline{\lambda}_1, \overline{\lambda}_2, \overline{\lambda}_3) = \sum_{a=1}^{N} \frac{\mu_a}{\alpha_a} \left(\overline{\lambda}_1^{\alpha_a} + \overline{\lambda}_2^{\alpha_a} + \overline{\lambda}_3^{\alpha_a} - 3\right)$$

Some forms of the free energy function

Anisotropic isochoric part

Material model implementation into Comsol Multiphysics

Equation			
eູ∂ ² u/∂t ² + dູ∂u/∂t + ⊽ (-o	$\nabla \mathbf{u} - \mathbf{o}\mathbf{u} + \mathbf{y} + \mathbf{a}\mathbf{u} + \mathbf{\beta} \cdot \nabla \mathbf{u} = \mathbf{f}$		
Subdomain selection	c a f $e_a d_a$ o β y Init Element Weak Variables		
	Application mode variables Name Expression	Unit	Description
	Sz_smpnlinvF33_smpn*Pz_smpn	MPa	Sz Second Piola-Kirc.
	5xy_s invF11_smpn*Pxy_smpn+invF12_smpn*Py_smpn	MPa	Sxy Second Piola-Kir
	mises sqrt(sx_smpn^2+sy_smpn^2+sz_smpn^2-sx_smpn*sy_sm	MPa	von Mises stress
~	Ws_s (W_vol+W_iso+W_ani)*thickness_smpn	(N·mm	Strain energy densit
Select by group	c11_s F11_smpn^2+F21_smpn^2	1	Right Cauchy-Green
	c12_s F11_smpn*F12_smpn+F21_smpn*F22_smpn	1	Right Cauchy-Green
	c21_s F12_smpn*F11_smpn+F22_smpn*F21_smpn	1	Right Cauchy-Green
Reset Equation			

Material model implementation into Comsol Multiphysics

🌀 Glob	🕼 Global Expressions				
Name	Expression	Unit	Description		
I1	C11+C22+C33	1	Invariants of	~	
I2	0.5*(I1^2-C11^2-2*C12^2-2*C13^2-C22^2-2*C23^2-C3	1			
13	J^2	1			
II1	I1*I3^(-1/3)	1	Modified inva		
II2	12*13^(-2/3)	1			
II4	A1*(C_11*A1+C_12*A2+C_13*A3)+A2*(C_21*A1+C_22*	1			
II6	B1*(C_11*B1+C_12*B2+C_13*B3)+B2*(C_21*B1+C_22*B	1			
Lamd	1/2*C11+1/2*C22+1/2*(C11^2-2*C11*C22+C22^2+4*C	1			
Lamd	1/2*C11+1/2*C22-1/2*(C11^2-2*C11*C22+C22^2+4*C1				
Lamd	C33	1			
lamda1	LamdaC1^0.5	1			
lamda2	LamdaC2^0.5	1			
lamda3	LamdaC3^0.5	1			
lamda_1	J^(-1/3)*lamda1	1			
lamda_2	J^(-1/3)*lamda2	1			
lamda_3	J^(-1/3)*lamda3	1			
W_vol	K_b/4*(J^2-1-2*log(J))	1	Volumetric st		
W_iso	muy1/a1*(lamda_1^a1+lamda_2^a1+lamda_3^a1-3)+muy		Isochoric str		
W_ani	k1/(2*k2)*(exp(k2*(II4-1)^2)-1)+k1/(2*k2)*(exp(k2*(II6-1	1	Anisotropic s		
e	OK Cancel	App	bly Help		

One family of fiber

One family of fiber

One family of fiber

 $\phi = 60^{\circ}$

Two perpendicular families of fibers

Two perpendicular families of fibers

φ=45⁰

Two families of fibers arranged symmetrically with respect to the axis of loading

Two families of fibers arranged symmetrically with respect to the axis of loading

 $\phi = 45^{\circ}$

Comparison of different material models

Conclusion

The new material model of the anisotropic composite material in finite strain and the Ogden model of hyperelastic material in 2-D were implemented into Comsol Multiphysics.

Some simple examples were subsequently presented, namely the extension of a composite block with a central hole. The results are in qualitative agreement with experimental observations.

Acknowledgement:

This work was supported by the subvention from Ministry of Education of the Czech Republic under Contract Code MSM 4674788501