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Abstract 

Briefly theory is given to introduce Model Predictive Control (MPC) concept. Method 
called Generalized Predictive Control (GPC) published in [1], [2] and [3] is based on 
Controller Auto-Regressive Integrated Moving-Average (CARIMA) model. Resulting 
controller has integrating character. In white noise case (without data filtering) the 
controller is rather sensitive to the measurement noise and model uncertainties. 
Polynomial C in process model is usually used as a controller parameter (as a filter) 
to increase controller robustness and it is called as T-polynomial. Different 
approaches how to design this polynomial coming out from the process model and 
controller parameters are suggested in the literature [4]. In the paper Kalman 
estimator is designed and its characteristic polynomial is used as a polynomial T. 
Prediction abilities of the models with and without data filtering are compared. 

1 Introduction 
Model Based Predictive Control involves wide range of control approaches sharing following 

features: using of process model to predict the plant future behaviour, control action calculation by 
minimization of the cost function – usually taking into account future control movements and future 
control error, receding horizon concept – whole procedure is repeated every sample time. Control is 
designed in time area, the process variables and criterion may have physical meanings (open way to 
production optimization), it is possible to cope with dead-times, non-minimal plants and multivariable 
systems in a nature way, different types of constraints can be handled with, etc. All this features 
caused that MPC is popular between control engineers and its popularity grows increasingly in 
research community too. 

2 Generalized Predictive Control 
Only main steps how to design GPC controller are outlined in the following text. Detailed 

solution is shown e.g. in [4]. 

CARIMA model is usually considered if disturbances are non-stationary – controller has 
integrating character. Process model is expressed as 

( ) ( ) ( ) ( ) ( ) ( )kezCkuzBkyzA 111 1ΔΔ −−− +−=  (1) 

where A(z-1), B(z-1) and C(z-1) are polynomials defined as 
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 The operator Δ is defined as 11 −−=Δ z , y(k) is plant output, u(k) is plant input and e(k) is zero-
mean white noise. 

Finite horizon quadratic criterion is considered (cost function) with penalization of future 
control error and control moves. J-step ahead predictions are expressed as a sum of forced response 
(response obtained if initial conditions are zero) and free response (response of the process if the 
control signals are kept constant). If there are no constraints the optimum can be expressed analytically 
as a linear gain matrix which multiplies predicted errors between the future reference and the free 
response of the process. If there are no predicted errors there is no control move - the objective will be 
fulfilled with the free evolution of the process. 



Instead of polynomial C so called T- polynomial is used as a fixed observer or a prefilter. Low 
frequency disturbances are removed by the Δ term in the prediction. Polynomial T detunes the 
response to unmeasurable high-frequency disturbances and prevents against excessive control actions. 
T is used as a design parameter that can influence robustness of the controller. Different approaches 
how to design T can be found in the literature but systematic approach has not been established. In our 
paper Kalman state estimator is designed and its characteristic polynomial is used as a T-polynomial. 

3 Kalman state estimator design 
The Kalman estimator is the optimal solution to the following estimation problem. 

For a given discrete-time state-space plant model 
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and the process and measurement noise covariance data { } { } RvvEQwwE TT == ,  to construct a 
state estimate  that minimizes the steady-state error covariance 
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The Kalman estimator has equation 

( ) ( ) ( ) ( ) ( ) ( )( )kukkkykukkkk m DxCLBxAx −−−++−=+ 1|ˆ1|ˆ|1ˆ  (4) 

The gain matrix L is computed by solving a discrete Riccati equation (the size of matrix L is 
number of the states ×  number of the plant outputs). 

4 Input-output equivalent to Kalman estimator 
We can use Kalman estimator as a filter to calculate filtered (estimated) plant outputs from 

measured outputs and inputs. 

Prediction of the plant output with Kalman estimator is 

( ) ( ) ( ) ( ) ( ) ( )( )[ ] ( )kukukkkykukkkky m DDxCLBxAC +−−−++−=+ 1|ˆ1|ˆ|1ˆ  (5) 

After Z-transformation we get discrete transfer function between plant input and measured 
output and filtered (estimated) plant output as 

( ) ( ) ( ) ( ) ( )( ) ( )zUzYzUzzY m DLLDBLCAIC ++−+−= −1ˆ  (6) 

It is not necessary to enumerate Equation (6). The deterministic part of the filter is identical with 
the process model. Equivalent CARMA process model can be used to get prediction equation 
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Where e(k) is 1-step ahead prediction error, polynomials A and B are process model 
polynomials and polynomial T is equal to the characteristic polynomial of Kalman estimator 

( )LCAI +−= zT det  (8) 

The order of polynomial T is equal to the number of the state variables. 

Optimal plant output prediction (we do not know future prediction error and therefore suppose 
e(k+1)=0) is 
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5 Simulated experiments 
Following two simulated experiments are calculated to demonstrate the filter behaviour – the 1-

step ahead prediction ability. Gausian white noises w and v are added to the input and output of the 
process. Variables u and ym are used in the filter to predict ( )1ˆ +ky  denoted as yp. 

 

 

 

 

 

 

 

 

 

 

 

Figure 1: Variables notation scheme 

 

Suppose w to be an additive Gausian white noise on the plant input (G = B) and v is Gausian 
white measurement noise. 

Covariance matrices – variances of noise w and v are: Q = 0.1, R = 1 

Our goal is to design a Kalman filter that estimates the output ( )1ˆ +ky  from given inputs u(k) 
and the noisy output measurements ym(k). 
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Figure 2: Model and noisy process input and output variables 

 

Prediction with filtered variables is compared with “deterministic prediction”. For white noise 
case - if T(z-1) = 1 we get from Eq. (9) 
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5.1 First order example 

Continuous-time process model: ( )
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Calculated estimator gain: L = 0.0182 



Filter from Eq. (6): 
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Characteristic polynomial of Kalman estimator: 
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Filter from Eq. (9): 
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Figure 3: Plant output predictions – with filtered variables 



Predictions without data filtering (from Eq. (9) if T(z-1) = 1): 
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Figure 4: Plant output predictions – without filtering 

5.2 Second order example 

Continuous-time process model: ( )
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Discrete-time process model, sample time TS = 1 s: 

Transfer function: 
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The noises are identical as in example 5.1. 
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Filter from Eq. (6): 
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Characteristic polynomial of Kalman estimator: 
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Filter from Eq. (9): 
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Figure 5: Plant output predictions – with filtered variables 

 

Predictions without data filtering (from Eq. (9) if T(z-1) = 1): 
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Figure 6: Plant output predictions – without filtering 

6 Solution in MATLAB 
Filter and characteristic polynomial equations are derived analytically in chapter 5. Code how to 

use MATLAB tools is given in the following script. Filter transfer function is obtained with Control 
Toolbox functions. Characteristic polynomial of Kalman estimator and filter symbolic transfer 
function are calculated with Symbolic Toolbox. 

 
% Transfer function 
mod_tf_c = tf(1,[2 1]); 
mod_tf_c = tf(1,conv([1 1],[1 1])); 
% Sample time 
Ts=1; 
% Discrete-time transfer function 
mod_tf_d = c2d(mod_tf_c,Ts); 
% Discrete-time state-space model 
mod_ss_d = ss(mod_tf_d); 
% Matrix data A,B,C,D for the state-space model 
[A,B,C,D]=ssdata(mod_ss_d); 
% Sizes of the system (number of states, inputs and outputs) 
[nx,nu]=size(B); [ny,nx]=size(C); 
% Stochastic discrete-time state-space model  
%       x[n+1] = Ax[n] + Bu[n] + Gw[n]           {State equation} 
%       y[n]   = Cx[n] + Du[n] + Hw[n] + v[n]    {Measurements} 
% with known inputs u, process noise w, measurement noise v 
G=B; %G=ones(nx,1); 
H=zeros(ny,1); 
mod_ss_stoch=ss(A,[B G],C,[D H],Ts); 
% Noise covariances  
% E{ww'} = QN,     E{vv'} = RN 
QN=0.1; RN=1; 



% Discrete Kalman estimator 
% x[n+1|n] = Ax[n|n-1] + Bu[n] + L(y[n] - Cx[n|n-1] - Du[n]) 
[KEST,L,P] = kalman(mod_ss_stoch,QN,RN); 
  
% Solution by Control Toolbox 
% Input 1 ... u 
% Input 2 ... ym 
% State-space representation 
est_ss = ss(A-L*C,[B-L*D L],C,D,Ts); 
% Transfer function representation 
est_tf = tf(est_ss); 
set(est_tf,'InputName',{'u','ym'},'OutputName','yp'); 
  
% Characteristic polynomial of Kalman estimator 
charpol = poly(A-L*C);      % poly(eig(A-L*C)); 
  
% Solution by Symbolic Toolbox 
z=sym('z'); 
est_x=inv(z*eye(nx)-A+L*C); 
% Symbolic transfer function between u and yp 
est_u=C*est_x*(B-L*D); 
[num_est_u,den_est_u]=numden(est_u); 
pol_den_est_u=sym2poly(den_est_u); 
% Normalized numerator and denominator 
num_est_un=vpa(num_est_u/pol_den_est_u(1),4); 
den_est_un=vpa(den_est_u/pol_den_est_u(1),4); 
  
% Symbolic transfer function between ym and yp 
est_y=C*est_x*L; 
[num_est_y,den_est_y]=numden(est_y); 
pol_den_est_y=sym2poly(den_est_y); 
% Normalized numerator and denominator 
num_est_yn=vpa(num_est_y/pol_den_est_y(1),4); 
den_est_yn=vpa(den_est_y/pol_den_est_y(1),4); 
  
% Symbolic characteristic polynomial of Kalman estimator 
charpol=vpa(det(z*eye(nx)-A+L*C),4); 
% Polynomial coefficient vector 
pol_charpol=sym2poly(charpol); 

7 Conclusion 
Importance of data filtering for practical applications is well known. Filter design for predictive 

controller is discussed in the paper. C polynomial of the process model is treated as a prefilter. This 
polynomial is called T-polynomial in GPC controller terminology and in our case it is designed as a 
Kalman filter characteristic polynomial. Two examples are given to demonstrate the prediction ability 
of the model with and without data filtering. The benefit of the data filtering for plant output 
prediction is clearly seen from the simulated experiments. Disadvantage is that the order of the filter is 
equal to the number of the state variables – for higher order systems or multidimensional system 
approximation filter with lower order should be sufficient. 
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