
CORRECTION OF RADIAL DISTORTION IN DIGITAL IMAGES
J.Jedlička, M.Potůčková

Charles University in Prague
Faculty of Science

Abstract

This article describes a method of the correction of radial distortion in digital images
using Matlab computing environment. The article focuses on two problems. First one
is an implementation of an algorithm for the radial distortion correction and the
second one is building a simple and easy to use application with Matlab GUI for the
radial distortion correction. Matlab was chosen for solving this task because it
supports fast and easy calculations with matrixes (in this case raster files) and it also
contains a set of build-in functions for 1D and 2D interpolation. Thanks to these the
development of the new application was really fast.

1. Introduction
Lens distortions are phenomena that prohibit applying the simple pinhole camera principle

in most of photogrammetric applications. Distortions belong to optic deficiencies called aberrations
that cause a degradation of the final image. In contrary to other aberrations, distortions do not affect
quality of the image but have a significant impact on the image geometry. There can be found two
types of distortions, radial distortion and tangential distortion. However, only radial distortion has
a significant influence on the image geometry. Tangential distortion is usually insignificant and is not
included into computing of distortion correction. Radial distortion is a deficiency in straight lines
transmission. The effect of radial distortion is that straight lines are bended as general curves and
points are moved in the radial direction from their correct position. Together with a spatial
transformation, the correction of radial distortion is the key step in the image rectification or
orthorectification. Especially when working with non-metric digital cameras, the radial distortion
reaches significant values and a correction of this distortion should be the first step in image
processing.

2. Radial distortion
As mentioned before, radial distortion is a deficiency in a straight line transmission. There are

two major types of radial distortion. The first one is a negative displacement also called barrel
distortion. Barrel distortion occurs when points are moved from their correct position towards the
centre of the image. The second type of radial distortion is a positive displacement, which occurs when
points are displaced further away from the optical axis. This type is also called pincushion distortion.
Barrel distortion is common for wide angle lenses and pincushion distortion for narrow angle lenses
[1].

Figure 1: Effect of radial distortion on image geometry. Doted lines represent original image without
any distortion. Solid lines show the effect of barrel (left) and pincushion (right) distortion.

Radial distortion is usually not perfectly rotationally symmetrical but for a computation
of distortion it is assumed to be symmetrical. If the image should be used for the measurement of
distances, radial distortion of lenses should be rotationally symmetrical (or at least nearly rotationally

symmetrical). If it is not, the correction for symmetrical distortion can cause errors in the position
of some points.

Due to the presumption of its rotational symmetry, radial distortion over an image can be
presented as a general curve describing a dependency between a radial distance from the image center
and radial distortion. Because an underlying distortion function is usually not known and can not be
obtained by analytic means, the polynomial approximation of radial distortion function is used [6].
When using photogrammetric cameras, the polynomial approximation of radial distortion is granted
from a camera producer. In these days using of non-metric cameras is more and more popular because
of their low cost and easy manipulating. In case of non-metric camera, a calibration must be carried
out before its use in photogrammetric applications [2]. The camera calibration report contains
necessary information about camera’s internal parameters including radial distortion. Camera
calibration is based on the measurement of control points. Differences between measured and
calculated control point coordinates is used for a construction of the polynomial approximation
of radial distortion. Specialized software packages as Photomodeler or Camera Calibration toolbox for
Matlab are designed for the calibration of non-metric cameras. When polynomial approximation of
radial distortion is known, it can be used for correction of radial distortion in an image.

3. ALGORTIHM DEVELOPMENT
The aim of this work was to develop a function that could correct radial distortion over

an image. We were focused on correction of radial distortion only, not on estimating of a polynomial
approximation of radial distortion (for this purpose Camera Calibration toolbox should be used
in Matlab computing environment [3]). The basic idea was quite simple. If we know radial distortion
values over the image, we are able to estimate a radial shift for each pixel and move this pixel to the
desired position. Basic trigonometric rules were used to compute the radial distance of a pixel from the
image center. After estimating the radial distance, its value was an input for computing a magnitude
of the radial shift in this point. By subtracting the magnitude of the radial shift from the radial
distance, the correct radial distance of a pixel from the image center is estimated. This radial distance
is then converted to x, y [row, column] coordinates which represent the desired position of a pixel in
the image (in image coordinates). If this procedure is applied to every pixel in the image, the result is
a set of non-uniformly spaced points. These points are associated with the appropriate pixel values, so
the corrected image can be interpolated.

The first step in developing the function was a construction of a universal interface that allows
for inserting polynomial approximation of radial distortion. Two possibilities of inserting these
parameters were implemented. The first one is passing the polynomial approximation as an executable
string (must contain a variable R which represents the radial distance), for example “0.005*R.^2-35”
(keeping Matlab rules for operators). This approach is really universal because every polynomial
approximation can be written as a function. The second option expects that radial distortion values are
known in some points of the image. The polynomial approximation is not computed but it is possible
to pass two vectors, first is the radial distance and the second is appropriate radial distortion. Another
necessary parameter is the type of interpolation between inserted pairs of values which is used to
estimate the polynomial approximation (in fact the order of inputs is: type of interpolation, radial
distance, radial distortion). Three vectors that represent row and column coordinates of corrected
pixels and appropriate pixel values are the output of this function. The output is in a vector form rather
than matrix because it is farther used with the function “griddata” which requires vector inputs.

After running this function on a testing dataset, some problems appeared. First problem was that
when a large image file was used as an input for our function, output vectors were too long. This
caused a problem when performing the griddata function (Matlab run out of memory). This problem
was partially fixed by adding two new input parameters to the function interface. These parameters
allow for specifying the sampling interval along rows and columns. This spacing can significantly
reduce the amount of output data but it also reduces the quality of a corrected picture. Other problem
with the griddata function was that sometimes this function broke down because it can not initialize
the first Qhull for the Delaunay triangulation. This can be fixed by adding some extra parameters to
the griddata function. For more information about the griddata and Qhull [7].

Another problem that cost some extra work was the computing speed. Initially the core
computing code was written with a use of for loops. This seems more natural when trying to write an

algorithm in some programming languages. However, Matlab is built especially for working with
matrixes and matrix computations are much faster than for or while loops in the Matlab environment.
Due to this fact, we transformed for loop operations to matrixes operations. In Matlab this process is
known as loops vectorizing [4]. This transform significantly speeds up computing process. The newly
implemented function with matrixes operations instead of loops runs approximately 140 times faster
than the old one.

Last thing we had to solve was related to the final corrected output image. First idea was that the
pixel size of the output corrected image must be the same as the pixel size of an input image. This
seems reasonable when we want to used the corrected image for measurement. Problems occur when
extreme values of radial distortion are passed as an input. Passing huge values of radial distortion is
useful for education purpose because it well illustrates the effect of radial distortion on the image
geometry. But when the values are too big, a matrix designed for an output image exceeds the
maximal size for a variable allowed in Matlab. This problem was solved by adding a switcher into
GUI. Using this switcher (two radio buttons in group) enables a user to choose between saving the
pixel size, or saving the number of pixels in the final image. The first option is useful when the final
picture is used for the distance measurement (the pixel size is the same in the input and output
images). The second option is necessary when radial distortion is of huge values (the number of pixels
in the input and output images is same but pixel size is changed).

4. Building GUI
 The final step in this work was creating the graphic user interface which allows for an easy to

use environment for performing the radial distortion correction without knowledge of Matlab
programming. For GUI development Matlab GUI builder was used. One main and bunch
of independent GUIs were developed to afford necessary functionality. Data important for the farther
use were exchanged among these GUIs in the predefined manner. All common data shared by GUIs
where saved in UserData property of main GUI as a structured variable [5]. Each GUI can access these
shared data easily and each GUI must update UserData property of main GUI every time when shared
data was changed. This guarantees data consistence and using of actual data in every operation.
Central storage of shared variables also improves orientation in application code.

5. Conclusion
 The presented function for the correction of images from the radial lens distortion has several

applications. In the Matlab environment, it can be used a pre-processing step for image registration.
In the same manner the images can be corrected before georeferencing in CAD or GIS software
packages that do not provide any function for correcting lens distortion that is a standard part
of professional photogrammetric systems. Another useful application we see in education for
a demonstration of geometric distortions caused by aberrations of objective lens of the non-metric
cameras.

Acknowledgement
The presented work was supported by the grant MSM0021620831 of the Czech Ministry of the Education,
Youth and Sports.

References
[1] E. M. Mikhail et al., Introduction to modern photogrammetry. Willey, New York, 2001.
ISBN 0-471-30924-9

[2] K. B. Atkinson, Close range photogrammetry and machine vision. Whittles Publishing, 1996.

[3] Camera Calibration Toolbox for Matlab
[http://www.vision.caltech.edu/bouguetj/calib_doc/htmls/parameters.html]

[4] R.Gonzales, R.E. Woods, S.L. Eddins, Digital image processing using MATLAB. Prentise Hall,
Upper Saddle River 2004. ISBN 0-13-008519-7.

[5] P. Marchand, T.O. Holland, Graphica and GUIs with MATLAB, third edition. Chapman &
Hall/CRC, New York 2003. ISBN 1-58488-320-0.

[6] J. Perš, S. Kovačič. Nonparametric Model-Based Radial Lens Distortion Correction Using Tilted
Camera Assumption [http://vision.fe.uni-lj.si/docs/janezp/pers-wwk2002.pdf]

[7] Qhull [http://www.qhull.org/]

Appendix

Figure 2. a) shows contours of the same radial distortion value and also the magnitude and the
direction of radial distortion over the image (arrows), b) shows main application GUI

Part of radialshift function (using matrixes operation)

%A is input image
A=double(A);
S=size(A);
sinuhel=zeros(S(1),S(2));
cosuhel=zeros(S(1),S(2));
%coordiante of image center
stred(1)=S(1)/2;
stred(2)=S(2)/2;
disp('COMPUTING RADIAL SHIFT');
try
%creating vectors for mashgrid
r=0.5:sr:S(1);
c=0.5:ss:S(2);
[C,ROW]=meshgrid(c,r);
R=sqrt((C-stred(2)).^2+(ROW-stred(1)).^2);
sinuhel=(ROW-stred(1))./R;
cosuhel=(C-stred(2))./R;
switch intmetod
 case 'spline'
 posun=interp1(varargin{1},varargin{2},R,'spline','extrap');
 case 'nearest'
 posun=interp1(varargin{1},varargin{2},R,'nearest','extrap');
 case 'linear'
 posun=interp1(varargin{1},varargin{2},R,'linear','extrap');
 case 'cubic'
 posun=interp1(varargin{1},varargin{2},R,'cubic','extrap');
 case 'custom'
 posun=eval(varargin{1});
 otherwise
 disp('error');
 end
 y=ROW-sinuhel.*posun;
 x=C-cosuhel.*posun;
 z=A;
catch
 error('error during computing radial shift');
end

Part of radialshift function before loops vectorizing (using for loops)

A=double(A);
S=size(A);
stred(1)=S(1)/2;
stred(2)=S(2)/2;
disp('COMPUTING RADIAL SHIFT');
try
for j=1:sr:S(1)
 for k=1:ss:S(2)
 rp=j-0.5;
 sp=k-0.5;

R=sqrt((rp-stred(1)).^2+(sp-stred(2)).^2);
sinuhel=(rp-stred(1))/R;

 cosuhel=(sp-stred(2))/R ;
 switch intmetod
 case 'spline'
 posun=interp1(rx,ry,R,'spline','extrap');

 posun=interp1(rx,ry,R,'nearest','extrap');

case 'nearest'

 case 'linear'
 posun=interp1(rx,ry,R,'linear','extrap');
 case 'cubic'

 posun=interp1(rx,ry,R,'cubic','extrap')
case 'custom'

 posun=eval(varargin{1});
 otherwise
 disp('error');
 end

Jan Jedlička
Charles University in Prague
Faculty of Science
Department of Applied Geoinformatics and Science
e-mail: jan_jedlicka@centrum.cz

Marketa Potuckova
Charles University in Prague
Faculty of Science
Department of Applied Geoinformatics and Science
e-mail: mpot@natur.cuni.cz
www.natur.cuni.cz/gis

mailto:jan_jedlicka@centrum.cz
mailto:mpot@natur.cuni.cz

	J.Jedlička, M.Potůčková
	Charles University in Prague

