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Abstract

Any morphological operation with binary or gray image is a time consuming task
in the case of large masks (structure elements) that must be applied. The paper
is oriented to the application of the fast Fourier transform (FFT) to the dilation
and erosion of n-dimensional gray image with the finite number of gray levels.
The method is based on gray level image decomposition to binary images, their
processing in the Fourier domain, nonlinear thresholding and composition to the
final gray image. The main advantage of our method occurs in the case of large
spherical masks use in which case the mask approximation in the Fourier domain
decreases substantially the discretization error. Our method can be combined
with the discrete approximation of large spherical masks which can be evaluated
in the Fourier domain as well.

1 Introduction

Basic morphological operations (dilation, erosion, opening, closing) with a small mask do not
bring problems of time consumption. Except of rectangular masks (structure element), the
time complexity of dilation is proportional to the product of image and mask sizes, which is
unacceptable for large masks inside large images. Our method is based on the replacement of
the dilation and erosion by modified convolution with a fixed mask. It is possible to use the
fast Fourier transform and thus the time complexity of proposed dilation and erosion methods
depends only on the image size. The independence of our method on the mask size enables to
use large masks for digital dilation and erosion of gray images.

2 Binary Dilation and Erosion via FFT

Let n ∈ N be a number of image dimensions (n-D image) and L ∈ N, L > 1 be a number of
gray levels (L = 2 for the binary image). Let N1, N2, . . . , Nn > 1 be image direction ranges,
B = {1, 2, . . . , N1} × {1, 2, . . . , N2} × . . .× {1, 2, . . . , Nn} be an index set of the image, and

N = card(B) =
n∏

k=1

Nk

be a number of image elements (image size). Thus, the original image can be represented as
a function X : B → {0, 1, . . . , L − 1}. The values of X outside B are supposed to be zero ones.
The mask can be represented as a function M : Zn → {0, 1} satisfying 1 < m < ∞ where

m = card{~w ∈ Zn; M(~w) = 1}

is the mask volume (size). It means, the mask is a finite sampling scheme in Zn with mask
radius

r = max{||~w||∞; M(~w) = 1} = max
{

max
k=1,2,...,n

|wk|; M(w1, w2, . . . , wn) = 1
}

> 0.

Let ~u ∈ B be an image element. The mask M defines the neighborhood of ~u as a finite set of
m points ~v ∈ Zn satisfying M(~v − ~u) = 1. A list of neighborhood values can be denoted as



L (~u) = (x1(~u), x2(~u), . . . , xm(~u)). Then the dilation and erosion of the image X by the mask
M are also functions D, E : B→ {0, 1, . . . , L− 1} satisfying

D(~u) = max{X(~v); ~v ∈ Zn ∧ M(~v − ~u) = 1}

E(~u) = min{X(~v); ~v ∈ Zn ∧ M(~v − ~u) = 1}
which can be rewritten as

D(~u) = max{xk(~u); 1 ≤ k ≤ m}
E(~u) = min{xk(~u); 1 ≤ k ≤ m}

for ~u ∈ B.

Let ∗ be a convolution operator in Zn. Then the function Y : B→ N0 is defined as

Y(~u) = (X ∗M)(~u)

for any ~u ∈ B. A formal rewriting comes to more clear formula

Y(~u) =
m∑

k=1

xk(~u).

Theorem 1 (binary dilation and erosion)
Let D, E be the dilation and erosion of the image X with the index set B. Let L = 2. Let
p : {true, false} → {0, 1} be a function which realizes a formal transform of logical value to
integer one. Then

D(~u) = p
(

Y(~u) >
1
2

)
,

E(~u) = p
(

Y(~u) > m− 1
2

)

for any ~u ∈ B and mask M of size m.

Proof:

(i) When D(~u) = 0, then (∀k = {1, 2, . . . , m})xk(~u) = 0. It implies also Y(~u) = 0 ≤ 1
2 .

(ii) When D(~u) = 1, then (∃k = {1, 2, . . . , m})xk(~u) = 1. It implies also Y1(~u) ≥ 1 > 1
2 .

(iii) When E(~u) = 0, then (∃k = {1, 2, . . . , m}) xk(~u) = 0. It implies also Y(~u) ≤ m−1 ≤ m− 1
2 .

(iv) When E(~u) = 1, then (∀k = {1, 2, . . . , m}) xk(~u) = 1. It implies Y1(~u) = m > m− 1
2 . ¤

The theorem 1 is useful for numeric realization of fast dilation and erosion of binary
images. Supposing that the image direction ranges N1, N2, . . . , Nn are powers of two, we can
represent the mask M and image X as arrays of the same size and then perform the n-dimensional
convolution via n-dimensional FFT.

Algorithm 1 (binary dilation and erosion):

1. Realize X(~u),M(~u) as arrays.

2. Calculate X (~ω),M(~ω) via FFT.

3. Calculate Y(~ω) = X (~ω)M(~ω).

4. Calculate Y(~u) via inverse FFT.

5. Calculate D(~u) = p
(
Y(~u) > 1

2

)
.



6. Calculate E(~u) = p
(
Y(~u) > m− 1

2

)
.

The number of operations (multiplications) in the algorithm 1 is then T(N) ∼ N log N
while the number of operations (comparisons) during the traditional dilation is T(N, m) ∼ N m.
It implies that the algorithm 1 is faster than the traditional one for the mask size m ≥ λ log N
where λ > 0 is constant. So, the algorithm 1 is useful for binary dilation and erosion with large
mask.

3 Gray Dilation and Erosion

According to basic theorems of digital morphology [5, 6], any gray level dilation can be decom-
posed to the L− 1 binary tasks. Summarizing the results of binary tasks, the final gray dilation
and erosion are obtained. Let X be the gray image with L > 2. We decompose it to a sequence
of binary images X1, X2, . . . , XL−1 according to the rule

Xk(~u) = cut(X(~u)− (k − 1))

where the function cut : Z→ {0, 1} is defined by the formula

cut(s) = min(1, max(0, s)).

Every binary image Xk is modified by the mask M using the algorithm 1 to obtain the dilation
Dk and erosion Ek of Xk for 1 ≤ k ≤ L− 1. The final gray dilation and erosion of image X are
calculated as

D(~u) =
L−1∑

k=1

Dk(~u),

E(~u) =
L−1∑

k=1

Ek(~u)

for any ~u ∈ B.

Algorithm 2 (gray dilation and erosion):

1. Decompose X to the X1, X2, . . . ,XL−1.

2. Calculate D1, D2, . . . ,DL−1 and E1, E2, . . . , EL−1 via algorithm 1.

3. Summarize D(~u) =
∑L−1

k=1 Dk(~u).

4. Summarize E(~u) =
∑L−1

k=1 Ek(~u).

The time complexity of algorithm 2 is T(N, L) ∼ (L − 1)N log N , which is proportional
to the number of gray levels. It implies that the algorithm 2 is faster than the traditional gray
dilation for the mask size m ≥ λ(L− 1) log N .

4 Dilation with Spherical Mask

It is very difficult to approximate spherical mask in the rectangular domain B but the algo-
rithms 1, 2 only operate with Fourier spectrum M(~ω) of given mask M. Any spherical mask of
radius R > 0 is defined as

M(~w) =
{

1 for ||~w||2 ≤ R
0 otherwise



for ~w ∈ Zn in the discrete case. After the extension to the real case (~w ∈ Rn) and Fourier
transform, we obtain:

M(~ω) =
2 sin Rω

ω
for n = 1

M(~ω) =
2πRJ1(Rω)

ω
for n = 2

M(~ω) =
4π(sinRω −Rω cosRω)

ω3
for n = 3

where ω = ||~ω||2 and J1 is the Bessel function of the first kind.

The spectra of circle (n = 2) and sphere (n = 2) are useful for the realization of biomedical
image gray morphology.

5 Experimental Part

The aim of experimental part is to verify the advantage of previous algorithms in the case of
dilation and erosion with spherical masks.

5.1 Dilation and Erosion of Binary Image

The study was performed for n ∈ {2, 3} and N1 = N2 = N3 = 128. The analytical form of
mask spectrum M(~ω) was sampled first. The referential discrete mask spectrum was obtained
as FFT of discrete spherical mask M(~w) denoted as M∗(~ω) = FFT(M(~w)). The algorithm 1
(binary form) was tested via dilation and erosion of circles (r = 8.7, r = 16.3), squares (a = 19.6,
a = 29), and diamonds (a = 13.86, a = 20.5) for n = 2 and mask radii R ∈ {4.1, 8.5, 11.6}.
Then, it was tested in 3-D via dilation and erosion of spheres (r = 6.4, r = 9.7, r = 13.4)
and cubes (a = 9.7, a = 13.4, a = 15.1) for mask radii R ∈ {4.2, 7.7, 11.1}. The measures of
dilated and eroded objects were calculated exactly and compared with measures from sampled
analytical and discrete masks. The results are summarized in Tabs. 1–4.

5.2 Fuzzy Image Processing

Denoting erosion and dilation of image X as E(X) and D(X), we define opening as O(X) =
D(E(X)) and closing as C(X) = E(D(X)). The white top hat is defined as WTH(X) = X−O(X)
and black top hat is defined as BTH(X) = C(X) − X. Then we can also define (for the given
constant mask):

• fuzzy edge detector: FED(X) = min(X − E(X), D(X)−X),

• fuzzy Minkowski sausage: FMS(X) = D(X)− E(X),

• fuzzy filtering: FFI(X) = (O(C(X)) + C(O(X)))/2 and

• fuzzy enhancement: FEH(X) = max{X + WTH(X)− BTH(X), 0}.

Original 3-D gray SPECT image was padded with zeros to size 128× 128× 128 with 201
gray levels (Fig. 1) was analyzed via gray level morphology with spherical mask of radius R = 2.5.
The results of various fuzzy-morphological operations (based on gray dilation and erosion) are
demonstrated on horizontal slice of index 60. The results of fuzzy operations mentioned above
are depicted in Figs. 2–5.

6 Conclusion

The morphological operation (like dilation and erosion) of binary and gray level images with large
spherical mask can be realized using the fast Fourier transform. Our method is based on the gray



level image decomposition to binary images, their processing via the FFT, nonlinear threshold
and composition to the final gray image. In the case of spherical mask, the mask radius can have
non-integer value. This is an advantage for the sampled analytical solution. The integer radius
of mask can cause worse results comparing to that achieved using the analytical approach. Its
approximation in Fourier domain decreases the discretization error of resulting dilated or eroded
images. The main advantage of our method is the independence on the mask size at the time
complexity of morphological operations depends only on the image size. It will enable to use
large masks for fractal analysis in our future work.
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area relative error [%]
object size R exact sampled discrete sampled discrete
circle 8.7 4.1 514.719 497.000 489.000 3.442 4.997
circle 8.7 8.5 929.409 905.000 897.000 2.626 3.487
circle 8.7 11.6 1294.619 1261.000 1253.000 2.597 3.215
circle 16.3 4.1 1307.405 1289.000 1273.000 1.408 2.632
circle 16.3 8.5 1932.205 1909.000 1901.000 1.201 1.615
circle 16.3 11.6 2445.447 2417.000 2409.000 1.163 1.490
square 9.8 4.1 758.410 697.000 697.000 8.097 8.097
square 9.8 8.5 1277.540 1157.000 1161.000 9.435 9.122
square 9.8 11.6 1716.333 1573.000 1573.000 8.351 8.351
square 14.5 4.1 1369.410 1337.000 1337.000 2.367 2.367
square 14.5 8.5 2053.980 1957.000 1961.000 4.722 4.527
square 14.5 11.6 2609.333 2493.000 2493.000 4.458 4.458

diamond 9.8 4.1 472.183 405.000 409.000 14.228 13.381
diamond 9.8 8.5 890.276 837.000 837.000 5.984 5.984
diamond 9.8 11.6 1257.884 1177.000 1177.000 6.430 6.430
diamond 14.5 4.1 809.610 745.000 749.000 7.980 7.486
diamond 14.5 8.5 1344.687 1317.000 1317.000 2.059 2.059
diamond 14.5 11.6 1794.716 1737.000 1737.000 3.216 3.216

Table 1: Binary 2-D dilation



area relative error [%]
object size R exact sampled discrete sampled discrete
circle 8.7 4.1 66.476 69.000 77.000 3.797 15.831
circle 8.7 8.5 0.126 1.000 1.000 695.775 695.775
circle 8.7 11.6 0.000 0.000 0.000 – –
circle 16.3 4.1 467.595 489.000 501.000 4.578 7.144
circle 16.3 8.5 191.134 205.000 205.000 7.254 7.254
circle 16.3 11.6 69.398 69.000 73.000 0.573 5.191
square 9.8 4.1 129.960 121.000 121.000 6.894 6.894
square 9.8 8.5 6.760 9.000 9.000 33.136 33.136
square 9.8 11.6 0.000 0.000 0.000 – –
square 14.5 4.1 432.640 441.000 441.000 1.932 1.932
square 14.5 8.5 144.000 169.000 169.000 17.361 17.361
square 14.5 11.6 33.640 49.000 49.000 45.660 45.660

diamond 9.8 4.1 32.028 37.000 41.000 15.525 28.015
diamond 9.8 8.5 0.000 0.000 0.000 – –
diamond 9.8 11.6 0.000 0.000 0.000 – –
diamond 14.5 4.1 151.440 177.000 181.000 16.878 19.519
diamond 14.5 8.5 12.293 13.000 13.000 5.754 5.754
diamond 14.5 11.6 0.000 0.000 0.000 – –

Table 2: Binary 2-D erosion

area relative error [%]
object size R exact sampled discrete sampled discrete
sphere 6.4 4.2 4988.916 4577.000 4397.000 8.257 11.865
sphere 6.4 7.7 11742.105 11025.000 10851.000 6.107 7.589
sphere 6.4 11.1 22449.298 21487.000 21259.000 4.287 5.302
sphere 9.7 4.2 11249.495 11067.000 10731.000 1.622 4.609
sphere 9.7 7.7 22066.647 21679.000 21157.000 1.757 4.122
sphere 9.7 11.1 37694.554 37379.000 36761.000 0.837 2.477
sphere 13.4 4.2 22836.346 22263.000 21843.000 2.511 4.350
sphere 13.4 7.7 39349.206 38737.000 38017.000 1.556 3.386
sphere 13.4 11.1 61600.872 60767.000 60041.000 1.354 2.532
cube 9.7 4.2 20321.305 18167.000 17963.000 10.601 11.605
cube 9.7 7.7 37442.162 32817.000 32337.000 12.353 13.635
cube 9.7 11.1 60623.481 56041.000 54721.000 7.559 9.736
cube 13.4 4.2 42114.402 40879.000 40579.000 2.933 3.646
cube 13.4 7.7 69319.549 65033.000 64361.000 6.184 7.153
cube 13.4 11.1 103933.216 101553.000 99993.000 2.290 3.791
cube 15.1 4.2 55858.198 57083.000 56735.000 2.193 1.570
cube 15.1 7.7 88467.789 86853.000 86085.000 1.825 2.693
cube 15.1 11.1 129083.243 131245.000 129493.000 1.675 0.317

Table 3: Binary 3-D dilation



Figure 1: Original 3-D gray SPECT image Figure 2: Fuzzy edge detector

Figure 3: Fuzzy Minkowski sausage Figure 4: Fuzzy filtering

Figure 5: Fuzzy enhancement



area relative error [%]
object size R exact sampled discrete sampled discrete
sphere 6.4 4.2 44.602 33.000 57.000 26.013 27.796
sphere 6.4 7.7 0.000 0.000 0.000 – –
sphere 6.4 11.1 0.000 0.000 0.000 – –
sphere 9.7 4.2 696.910 739.000 775.000 6.040 11.205
sphere 9.7 7.7 33.510 15.000 33.000 55.238 1.523
sphere 9.7 11.1 0.000 0.000 0.000 – –
sphere 13.4 4.2 3261.761 3335.000 3407.000 2.245 4.453
sphere 13.4 7.7 775.735 695.000 805.000 10.408 3.773
sphere 13.4 11.1 50.965 45.000 57.000 11.704 11.841
cube 9.7 4.2 1331.000 1287.000 1331.000 3.306 0.000
cube 9.7 7.7 64.000 69.000 125.000 7.813 95.313
cube 9.7 11.1 0.000 0.000 0.000 – –
cube 13.4 4.2 6229.504 6851.000 6859.000 9.977 10.105
cube 13.4 7.7 1481.544 1893.000 2197.000 27.772 48.291
cube 13.4 11.1 97.336 105.000 125.000 7.874 28.421
cube 15.1 4.2 10360.232 12159.000 12167.000 17.362 17.439
cube 15.1 7.7 3241.792 4497.000 4913.000 38.720 51.552
cube 15.1 11.1 512.000 629.000 729.000 22.852 42.383

Table 4: Binary 3-D erosion
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