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Abstract 

At first, we discuss the basic structure of the fuzzy system as a simple yet powerful 
fuzzy modeling technique. Neural networks and fuzzy logic models are based on very 
similar underlying mathematics. The similarity between RBF networks and fuzzy 
models is noted in detail. Then, we propose the extension of RBF neural networks by 
the cloud model. Time series approximation and prediction by applying RBF neural 
networks or fuzzy models and comparisons between the various types of RBF 
networks and statistical models are discussed  
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1 Introduction  
In this paper, we consider the approximation ability of ARMA models and models based on fuzzy 

systems to “explain” the behaviour of time-series variables. In addition, we explore some of the more 
important specifications associated with approximation of time-series variables using RBF networks.  

2 A model of fuzzy systems 
This section concentrates on the basic principles of identifying input-output functions of systems 

using fuzzy systems. Fuzzy systems theory have been recently consolidated and presented by B. 
Kosko [5]. 

 

Fig. 1: Fuzzy system architecture. 

The basic fuzzy system architecture is shown in Fig. 1. In this architecture the fuzzy system maps 
input fuzzy sets A to output fuzzy sets B. The fuzzy inference computes the output fuzzy sets iB′ , 
weights them with the weights wi, and sums to produce the output fuzzy set B, i.e. 
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The fuzzy system is distributed and consists of a series of a separate fuzzy rules (relations) of the 
type of  if Ai then Bi. Centroidal output converts fuzzy sets vector B to a scalar. The most popular 
centroidal defuzzification technique uses all the information in the fuzzy distribution B to compute the 
crisp y value as the centroid y~  or centre of mass of B, i. e. 
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where Bµ  represents the union of all clipped output fuzzy sets. When the output membership 
functions are singletons, then, in the case of an →kℜ ℜ  function, Eq. (2) becomes 
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where  stands for the centre of gravidity of the jth output singleton, the notation jy µ  is used for a 
membership function and n denotes the number of rules. 

As mentioned earlier the output fuzzy sets can be calculated if all the separated fuzzy rules are 
known and the weights are determined. As in fuzzy logic systems all operations involve sets, the 
amount of calculation per inference rises dramatically. In a fuzzy system, powerful tools for 
generating fuzzy rules purely from data are neural networks. In next section we show, how to obtain 
fuzzy rules and how to determine the weights wi for fuzzy system using RBF networks. 

3 RBF neural network implementation of fuzzy logic  
Fuzzy systems offer methodologies for managing uncertainty in a rule-based structure. In this section, 
RBF neural network structures are used (see Fig. 2) as tools of performing fuzzy logic inference for 
fuzzy system depicted in Fig. 1. We propose the neural architecture according to the Fig. 2 whereby 
the a priori knowledge of each rule is embedded directly into the weights of the network. 

The structure of a neural network is defined by its processing units and their interconnections, 
activation functions, methods of learning and so on. In Fig. 2, each circle or node represents the 
neuron. This neural network consists an input layer with input vector  and an output layer with the 
output value . The layer between the input and output layers is normally referred to as the hidden 
layer. Here, the input layer is not treated as a layer of neural processing units. One important feature of 
RBF networks is the way how output signals are calculated in computational neurons. The output 
signals of the hidden layer are  

x
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where  is a k-dimensional neural input vector,  represents the hidden layer weights, x jw 2ψ  are radial 
basis (Gaussian) activation functions. Note that for an RBF network, the hidden layer weights  
represent the centres  of activation functions 

jw

jc 2ψ . 

 

Fig. 2: RBF neural network architecture. 

The output layer neuron is linear and has a scalar output given by  =  where  are the 

trainable weights connecting the component of the output vector . Then, the output of the hidden 
layer neurons are the radial basic functions of a proximity of weights and input values. A serious 
problem is how to determine the number of hidden layer (RBF) neurons. The most used selection 
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method is to preprocess training (input) data by some clustering algorithm. After choosing the cluster 
centres, the shape parameters jσ  must be determined. These parameters express an overlapping 
measure of basis functions. For Gaussians, the standard deviations jσ  can be selected, i. e. jσ ~ c∆  
where denotes the average distance among the centres. c∆

To show the similarity of the RBF neural network and the fuzzy system, consider again the scalar 
output . The RBF network computes the output data set as ŷ
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where N is the size of data samples, s denotes the number of the hidden layer neurons. The hidden 
layer neurons receive the Euclidian distances )( jcx −  and compute the scalar values  of the 

Gaussian function  that form the hidden layer output vector . Finally, the single linear 
output layer neuron computes the weighted sum of the Gaussian functions that form the output value 
of . 
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If the scalar output values  from the hidden layer will be normalised, where the normalisation 

means that the sum of the outputs from the hidden layer is equal to 1, then the RBF network will 
compute the “normalised” output data set  as follows 
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The similarity of approximation schemes (6) and (3) is obvious. From these schemes is shown that 
the weights  in Eq. (6) to be learned correspond to  in Eq. (1), and  to tjv , iw .)/(. 2ψ )(xjµ  in Eq. (3). 
Thus, the adaptive fuzzy system depicted in Fig. 1 uses neural techniques to abstract fuzzy principles 
and to choose the weights , and gradually refine those principles as the system samples new cases. 
These properties were firstly recognised by V. Kecman [3]. In Fig. 2, the network with one hidden 
layer and normalised output values  is the fuzzy logic model or the soft RBF network.  
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Next, to improve the abstraction ability of soft RBF neural networks with architecture depicted in 
Fig. 2, we replaced the standard Gaussian activation (membership) function of RBF neurons with 
functions based on the normal cloud concept. Cloud models are described by three numerical 
characteristics [2]: Expectation (Ex) as most typical sample which represents a qualitative concept, 
Entropy (En) as the uncertainty measurement of the qualitative concept and Hyper Entropy (He) which 
represents the uncertain degree of entropy. En and He represent the granularity of the concept, because 
both the En and He not only represent fuzziness of the concept, but also randomness and their 
relations. This is very important, because in economics there are processes where the inherent 
uncertainty and randomness are associated with different time. Then, in the case of soft RBF network, 
the Gaussian membership function  in Eq. (6) has the form .)/(. 2ψ
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where  is a normally distributed random number with mean  and standard deviation , E is 
the expectation operator. 
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4   An Application 
We illustrate the classic, fuzzy logic (soft) and cloud (granular) RBF neural networks on the input 

– output function estimation of a sales process. The time plot of the data set used in this application 
(the 724 daily sales for Hansa Flex company, 2004-2005) is shown in Fig. 3.  
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Fig. 3: Daily sales from January 2004 to December 2005 

Statistical models chosen after some experimentation using the Statgraphics procedures were  

ttt yy εφ += −71    or (8)

tttt yy εεθ +=− −− 717 . (9)

Both statistical models have typical seasonal behavior with the seventh lag. Fitted models have the 
following forms: 71248.0ˆ −−= tt yy  or 77 93868.0 −− =− ttt yy ε  respectively. The usual diagnostic 
checking procedures according to Box & Jenkins [1] do not reveal any inadequacies in these models. 
The Box-Jenkins theory was also used to specify the neural input variables. As shown from Eq. (8) 
and (9), these variables are here  and 7−ty 7−tε  respectively. 

In the RBF neural network framework, the non-linear function f(x) was estimated according to the 
expressions in Eq. (5). In the case of RBF fuzzy logic network, the non-linear input – output 
approximation function was estimated according to the formula (6). Next, the fuzzy logic RBF neural 
network was extended towards estimation with (a priori known) noise levels of the entropy. Noise 
levels are indicated by hyper entropy. It is assumed that the noise level is constant over time. We 
select, for practical reasons, that the noise level is a multiple, say 0.015, of entropy. In Table 1, we 
give the achieved results of approximation ability in dependence on various number of RBF neurons. 
The mean square error (MSE) was used to measure the approximation ability. 

Table 1. The MSE´s measures of approximation accuracy of various RBF networks related to the different number of 
clusters (RBF neurons).  

Numb. 
of RBF 
Neurons 

NNW 
Archite-

cture: 

Gausian 
Classic RBF 

Soft 
RBF 

Classic with 
Normal Cloud 
Concept 

Soft with 
Normal Cloud 
Concept 

RBF network representations for model (8): 
3 1.439 0.698 1.503 0.729 
5 0.729 0.693 0.817 0.716 
10 0.687 0.675 0.671 0.678 
15 0.697 0.681 0.681 0.678 
RBF network representations for model (9): 
3 0.783 0.646 0.786 0.647 
5 0.810 0.632 0.803 0.630 
10 0.607 0.571 0.607 0.571 
15 0.582 0.563 0.582 0.563 

The mean (centre), standard deviation of the clusters (RBF neurons) are computed using K-means 
algorithm. The data used are the same as used in the previous statistical models. As shown in Table 1, 
models that generate the “best” MSE´s are soft RBF networks.  

Comparing both approaches, i. e. the models based on the Box-Jenkins methodology (the MSE for 
model expressed by Eq. (8) is 0.7793 and by Eq. (9) is 0.74606 respectively), and the models based on 
RBF networks approaches, we clearly see that models based on RBF networks are better 
approximation models because the estimated values are close to the actual values.  

 



Table 2. The MSE´s measures of ex post forecast accuracy of various RBF networks related to the different number of 
clusters (RBF neurons).  

Numb. 
of RBF 
Neurons 

NNW 
Archite-

cture: 

Gausian 
Classic RBF 

Soft 
RBF 

Classic with 
Normal Cloud 
Concept 

Soft with 
Normal Cloud 
Concept 

RBF network representations for model (8): 
3 1.6634 0.8602 1.6092 0.8488 
5 0.8509 0.8377 0.8489 0.8338 
10 0.8055 0.8359 0.8051 0.8346 
15 0.8433 0.8480 0.8391 0.8026 
RBF network representations for model (9): 
3 0.8452 0.6869 0.8451 0.6879 
5 0.8806 0.6548 0.8801 0.6549 
10 0.6600 0.6241 0.6649 0.6245 
15 0.6307 0.6248 0.8795 0.6052 

Next, a forecast model was produced. Forecasts are provided during the ex post forecast period 
( , …, , i. e. the sample period ends with observation ). Table 2 presents the MSE´s 
measures of ex post forecast accuracy. As can be seen from Table 2, the soft RBF networks have 
indeed a forecasting power: if anything, it seems that they manage to forecast better than other RBF 
network architectures. 
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5   Conclusion 

In this article, we have extended RBF neural network methodology to approximate the non-linear time 
series data using normal cloud models in the role of standard Gaussian activation (membership) 
function for RBF neurons. This was done by formulating a hyper entropy of standard deviation 
(entropy) of the Gaussian cloud model. 

To approximate the input-output function of a business process, the RBF neural network approach 
was applied on the daily sales data of the Hansa Flex company and compared with an approach based 
on statistical procedures. For the sake of approximation abilities we evaluated 34 models. Two models 
are based on the Box-Jenkins time series analysis approach, and 32 models are based on the neural 
(fuzzy logic) methodology. Using the disposable data a very appropriate model is the soft RBF 
network with activation functions based on the granular concept. It is also interesting to note that the 
most computationally intensive models, the model based on the Box-Jenkins methodology, is newer 
considered “best”. 
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