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Abstract 

Evaluation of axial dispersion flow parameters in trickle bed reactor (TBR) as a 
identification task is studied in this paper. Four axial dispersion models (ADMs) were 
employed to identify principal flow parameters from experimental data. The impulse-
response method was employed to measure the residence time distribution (RTD) in 
the liquid phase. Isobutanol was chosen as a tracer for the selected liquid phase 
represented by toluene. Tracer concentration at the outlet from the reactor was 
continuously monitored by a digital refractometer. Optimal model and the best 
predictions of the parameters were obtained via non-linear regression and least 
square method. 

1 Introduction 
Trickle bed reactors (TBRs) are randomly packed tubular devices employed in industrial 3-

phase catalytic processes. The most widely used operation is downflow, where gas and liquid flows 
co-currently through packing in line with gravitational force. Thanks to simple construction and low 
operation costs are TBRs widely used in many industrial areas. Some examples of their applications 
are hydrocracking, hydrodesulfurization, hydrodenitrogenation in petroleum industry, hydrogenation 
in industry of petrochemicals and in wastewater treatment industry [1, 2]. 

In spite of many advantages of using TBRs, their most important disadvantage is non-uniform 
liquid flow through packing layer which has almost stochastic character. Due to this non-uniformities 
of liquid flow the catalyst surface may be incompletely wetted what results in low catalyst surface 
utilization. One of experimental methods commonly used for liquid flow characterization is 
measurement residence time distribution (RTD). With appropriate evaluation of such experimental 
data a useful properties of liquid flow structure can be found. The most important characteristics 
influencing reactant conversion and selectivity are the mean residence time of liquid phase and extent 
of back-mixing. 

Even if TBRs were intensively studied in the past, unfortunately the most studies were 
conducted in laboratory reactors with air, water and nonporous particles, what is useless for industrial 
applications. 

This paper is devoted to characterize liquid flow in trickle bed reactor with appropriate 
mathematical model based on experimental data of residence time distribution of organic liquid. Four 
mathematical models with axial dispersion with different boundary conditions were used. 

2 Axial dispersion models 
One of the main models which are used in chemical engineering praxis for the dynamic 

description of the behavior flow distributed parameter systems is an axial dispersion model (alias axial 
diffusion model). The diffusion in it is superimposed on plug flow. The general mathematical 
expression for this one-parametric model is a linear partial differential equation 
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where by means tracer technique c(x, t) as a function of space coordinate and time is a concentration 
profile of the injected tracer in the exit stream of the canal, u is an average fluid velocity. The 
coefficient of axial dispersion DL is a parameter of a model. It is also called turbulent diffusion 
coefficient or back mixing coefficient. Suppose the uniform intensity back mixing is the unique 
characteristic. This coefficient can be defined as 
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where ub is the velocity of back flow (m s-1). 

As a model parameter is more often used the dimensionless so called Peclet number Pe which is 
defined as 
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where H is the real canal length. 

The form of the solution and behavior of the model (see Eq. 1) then depends on the one initial 
and two boundary conditions. The four variants of these conditions are considered in this paper (see 
Table 1). 
 
Table 1: THE INITIAL AND BOUNDARY CONDITIONS OF 4 CONSIDERED ADMS 
ACC – axial closed-closed model: zero initial condition, closed canal, Danckwerts boundary 

conditions 
ACO – axial closed-open model: zero initial condition, semi-closed canal, Danckwerts 

boundary condition for left part, zero boundary condition 
for right part of canal 

AEO – axial enforced closed-open 
model: 

zero initial condition, semi-closed canal, enforced 
boundary condition in left closed part, zero boundary 
condition in right open and infinite part of canal 

AOO – axial open-open model: zero initial condition, enforced condition in x = 0, infinite 
canal in both parts, zero boundary conditions 

Eq. 1 was solved via one sided Laplace transform for selected initial and boundary conditions. 
The transfer functions G(H, p) were derived and the impulse (weighting) functions g(H, t) and step 
responses h(H, t) were obtained via inverse Laplace transform, operator rules and by using Laplace 
transform table for these ADMs. 

For practical using, it is useful to express these functions as function of dimensionless time 
θ = t/τ, where the following relations are valid 

 ( ) ( ) ( ) ( θθ
τ

,h,h,,g1,g HtHHtH == ) (4) 

and where  
  (5) tM1=τ
is a dimensional 1st raw moment of g(H, t). 

It is possible to obtain the mode by analytical solving of the following equation for the majority 
of the models discussed as 
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By substituting the value obtained in the relation for the weighting function the value of the 
functional value of impulse function in mode g(θM) is also calculated. The ACC model is once more 
an exception because the analytical expression for θM and g(θM) is not available. The values can be 
obtained only via numerical calculation depending on Peclet number value. 

The main properties of the four ADMs are presented in Tables 2-5. Some of these properties are 
useful for the parameter identification applied for the experimental data obtained from TBR. 



Table 2: AXIAL ENFORCED CLOSED-OPEN MODEL PROPERTIES (AEO) 
Item Basic characteristics Equation 
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Figure 1: The dependence of θM on Pe for 4 models Figure 2: The dependence of g(H, θM) on Pe for 
4 models 

 



Table 3: AXIAL CLOSED-CLOSED MODEL PROPERTIES (ACC) 
Item Basic characteristics Equation 
a Basic equation ( ) ( ) ( )
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Table 4: AXIAL CLOSED-OPEN MODEL PROPERTIES (ACO) 
Item Basic characteristics Equation 
a Basic equation ( ) ( ) ( )
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3 Nonlinear SSQ method 
Let a = (K, Pe, T, Td, c0) be vector of parameters. Let (tk,yk) be experimental response for 

k = 1, ..., m. The objective function for nonlinear regression is then well known sum of squares 
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Let SSQ reaches its minimum value SSQopt in point aopt. Let H = ∂2SSQ(aopt)/∂a2 be positive definite 
Hessian matrix in the maximum likelihood estimate. Now we can estimate the model error  
se = (SSQopt/(m – n))1/2 and one-standard deviation of parameters as vector 
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Here m is the number of experimental data and n is the number of estimated parameters. The last 
question is how to minimize the function SSQ in the neighborhood of the moment estimate. 

Three aspects are necessary for the reliable optimization for non-convex functions 
• The suitable domain of optimization, where the solution is expected 
• The sophisticated initial estimate of searched parameters 
• The effective method of convex optimization 

In this specific case, the moment estimates were used as the initial parameter values. The 
optimization domain was created by 90 % decreasing, respectively increasing of the initial nominal 
values. The Predictioned conjugate gradient method was used for the task solution, because it is the 
recommended standard for the problems of this specific type. The Matlab realization of this method is 
well-known as fmincon function which attempts to find a constrained minimum of a scalar function 
of several variables starting at an initial estimate.  
Table 5: AXIAL OPEN-OPEN MODEL PROPERTIES (AOO) 
Item Basic characteristics Equation 
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One of the possible types of the function application is presented here as 

x = fmincon(fun,x0,A,b,Aeq,beq,lb,ub) 

where x is optimum parameter vector, fun is the name of the objective function, x0 is the initial 
estimate vector, lb and ub are the lower, respectively upper bound on the optimization domain. The 
remaining parameters A, b, Aeq, beq represent the other linear constrains and there are empty 
in this specific task. 

4 Experimental part 
Experimental data of the residence time distribution (RTD) in liquid phase were measured in 

pilot plant trickle bed reactor. The main part of the reactor consisted of 1,5 m long stainless-steel 
column 0,1 m in diameter. Column was filled to the height of 1,5 m with 3mm spherical particles of 
commercial catalyst Noblyst 1505 (Degussa). Toluene and nitrogen were used as a model phase 
system. All experiments were conducted at pressure 0.3 MPa (abs.) and temperature 20 °C. Set of 
experimental data was done at liquid and gas superficial velocities: vL = 0.0035 m/s and vG = 0.044-
0.178 m/s. 

RTD in liquid phase was measured via impulse-response method, where tracer injected to the 
reactor was monitored by refractometer in the outlet stream. Isobutanol served as a suitable tracer 
which provides linear dependence of refractive index on isobutanol concentration in toluene. 
Refractive index was measured by digital refractometer PR-23 (K-Patents, Finland). This through-
flow refractometer installed at reactor outlet and it didn’t need extra sampling of liquid mixture. 
Thanks to built-in temperature sensor the device provided values of measured refractive index with 
temperature compensation. Measurable range of refractive index is 1.3100 ≤ nD ≤ 1.5400 with 
accuracy nD ± 0.0002 and sampling frequency 1 Hz. This range sufficiently covered measured values 
which varied between 1.3928 (isobutanol) and 1.4922 (toluene). 

To minimize impact of tracer injection on flow pattern in the reactor, the tracer was injected at 
the same feed rate as liquid phase. Liquid phase feed was switched off during tracer injection which 
was 5 sec in all cases. 

5 Results 
For given experimental data the results of approximations via the four ADMs presented above 

are drawn up in Table 6. Only one data file is presented in this paper. For the other data files with 
various flows of liquid and gas the results are similar. 

It was necessary to take account the transport delay Td into the evaluation procedure of 
experimental data. This delay is a function of liquid and gas flow rate. It represents the time delay due 
to tracer transport of to the measured section. It wasn’t possible to measure delay experimentally due 
to construction disposition of pilot plant apparatus and hence it was optimized as a model parameter. 
Optimum value of the delay was ca. 46 sec. 

Evaluated value of Peclet number (from Table 6) is about 4 what indicates negligible extent of 
axial dispersion in the reactor for all ADMs. 

The comparison of data approximation for all 4 ADMs is presented in Figure 3. Because the 
model errors are small, the curves nearly melt. So that, the details of the beginning, peak and tail part 
are presented in Figs. 4-6.  

The relative error in the beginning part of the weighting function approximation for all ADMs is 
quite high (max. 75 %) because it depends on the quality of Td estimate (the best is AEO model). The 
relative error in the peak part of the weighting function approximation is max. 6 % (the best is AOO 
model). The relative error in the tail part of experimental and approximation curves depends on the 
quality of data measurement and an elected model type (the best is for AEO model). 



Table 6: EXAMPLE OF EVALUATED PARAMETERS OF ALL ADMs 

parameter estimate AEO ACO ACC AOO
moment 0.0068 0.0084 0.0079 0.0099

LSQ 0.0076 0.0101 0.0079 0.0125
SD 0.0000 0.0001 0.0001 0.0002

moment 4.9705 3.7887 1.9479 3.0336
LSQ 4.2952 3.6356 3.0286 3.7462
SD 0.1315 0.1165 0.1212 0.1136

moment 66.4556 49.1076 55.6017 34.0959
LSQ 56.1531 41.9588 53.3562 33.6796
SD 0.3584 0.4008 0.3515 0.4473

moment 36.5733 53.9212 47.4271 68.9329
LSQ 44.9167 46.9730 46.6234 48.0486
SD 0.3778 0.3807 0.4084 0.3730

model error 1.73E-04 1.71E-04 1.73E-04 1.71E-04

Pe

T (s)

K

Td  (s)

 
 

  
Figure 3: The data approximation for 4 models Figure 4: The data approximation for 4 models in 

the start part of characteristics 

  
Figure 5: The data approximation for 4 models in 
the peak part of characteristics 

Figure 6: The data approximation for 4 models in 
the tail part of characteristics 

6 Conclusion 
All ADMs fit the given experimental data well. The model election depends on the criterion of 

the optimization as it is shown here. 
• In case the criterion of the optimization is the minimal model general error then ACO and 

AOO models are the best ones. 
• In case the criterion of the optimization is the value of the transport delay Td then ACC model 

is the best. But this model has a lot of disadvantages – the model evaluation takes more than 
8 hours (in normal PC) for given data (because of complicated sum evaluation).  



• In case the criterion of the optimization is the model complexity then AOO model is the best 
one (it is the simplest model).  

• In case the criterion of the optimization is the time of model evaluation then AEO and AOO 
models are the best ones, because the evaluation time is the shortest (less then 5 minutes). 

• In case the criterion of the optimization is the relative error of approximation in the beginning 
part of the weighting function then AEO model is the best, for the relative error of curve 
approximation in the peak part AOO is the best model and for the tail part AEO model is the 
best one. 
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8 List of Symbols 
a – vector of parameters (K, Pe, T, Td, c0) 
c(x, t) – tracer concentration (kg m-3) 
DL – coefficient of axial dispersion (m2 s-1) 
G(H, p) – transfer function 
g(H, θ)– impulse function 
H – tube length (m) 
h(H, θ) – step response 
Mk

θ – dimensionless k-th raw moment 
nD – refractive index 
Pe – Peclet number (dimensionless) 
QV – volumetric rate (m3 s-1) 
se – one-standard deviation of parameters 
SSQ – function for sum of squares evaluation 
t – time (s) 
Td – transport delay (s) 
u – velocity of convective flow (m s-1) 
ub – velocity of back current (m s-1) 
V – volume (m3) 
x – length coordinate (m) 
vG – gas velocity (m s-1) 
vL – liquid velocity (m s-1) 
 
γ – coefficient of variation 
γ1 – skewness 
γ2 – kurtosis 
θ – dimensionless time θ = t/τ 
κ – roots of transcendent equation 
μk – dimensionless kth central moment 
σ2 – variance 
τ = T – mean residence time (s) 
 
ACC – axial closed-closed model 
ACO – axial closed-open model 
AEO – axial enforced closed-open model 
AOO – axial open-open model 
ADM – axial dispersion model 
RTD – residence time distribution 
TBR – trickle bed reactor 
LSQ – least square method 
SD – standard deviation 
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