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Abstract 

The paper deals with six approaches how to determine a derivative of the matrix 
exponential function in the Matlab language environment. Namely, a Taylor series 
expansion, an augmented matrix utilization, an eigenvalues decomposition, a Laplace 
transform approach, a convolution integral evaluation and a Padé approximation 
method are discussed in the paper. Some of the above methods are connected with a 
scaling and squaring process to improve the stability. Besides, possible Matlab listings 
are shown at each method as well.  

1 Introduction & Motivation Comment 
Six possible methods how to compute a first derivative of the matrix exponential function are 

discussed while using the Matlab language environment. A usefulness for such the computation 
appears in many branches of the electrical engineering simulation. For example, in the field of the 
circuit theory, it arises in the process of a sensitivity determination at the electrical circuits containing 
multiconductor transmission lines (MTL) [1, 2]. The properties of an (n+1)-conductor TL in the        
s–domain can be expressed using a chain matrix 

( )( , ) s xx s e= MΦ  ,     (1) 

where x denotes a geometric coordinate along the MTL and M(s) is the 2n-order square matrix  
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with     
0 0 0( )s s= +Z R L     ,   0 0 0( )s s= +Y G C               (3) 

as the n-order series impedance and shunting admittance matrices, respectively, R0, L0, G0 and C0 as 
MTL per-unit-length matrices, and 0 as a zero matrix. The sensitivities can be got resulting from the 
first derivative of (1), with respect to a parameter γ∈M(s) [1]. Thus, γ is the element of one of the per-
unit-length matrices stated above, while x is considered as a constant in this case. As will be shown 
later, for all the techniques the first derivative of the matrix at the exponent is required. In case of our 
application example, depending on γ and considering (2) and (3), it is given by Table 1 [1]. 

TABLE 1. DERIVATIVES ∂M(S)/∂γ NEEDED FOR DETERMINING ∂Φ(X,S)/∂γ 
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As is obvious finding the above derivatives is already straightforward. Some examples of sensitivities 
computation at the MTL systems can be found e.g. in [1-3]. 

To generalize our approach for any type of matrix, however, let us denote the matrix in view as 
M ≡ M(γ), when its dependence on γ is evident. The matrix exponential function is then formulated as 

   ( )( , ) xx e γγ = MΦ  ,           (4) 

with x standing for any real parameter, and ∂Φ(γ,x)/∂γ is what we want to determine. 



2 Taylor Series Expansion with Scaling & Squaring 
As is well known, the matrix exponential function (4) can be expanded into the Taylor series as 
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where a derivative of the k–th power of the matrix is stated as follows. If we consider e.g. an identity 
Mk(γ) = M(γ)Mk-1(γ) the first derivative is written as 
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that can be processed recursively, starting with k = 2. 

In practice, the infinite sum (6) will only be evaluated for some finite number of terms. The 
convergence sufficiently rapid is ensured if the product M(γ)x is close enough to a null matrix. 
Therefore, the derivative is found for a transformed matrix exponential function Φ(γ,x/r), for such the 
r in order to meet the Euclidian norm ||M(γ)x/r)|| < (0.15 to 0.20) (the values are recommended in [4] 
for 3 × 3 matrices). This temporal result is transformed back to get the original derivative. A procedure 
is based on so-called scaling and squaring [4]. First, considering a formula based on (4) as 

    ( , ) ( , )rx x rγ = γΦ Φ  ,             (8) 

then if r = 2M, M integer, a restoring Φ(γ,x) from Φ(γ,x/r) can fast be performed by a squaring process 
1 2( , 2 ) ( , 2 )m mx x−γ = γΦ Φ  ,               (9) 

successively for m = M, M-1,…,1. Then, a recursive formula to restore ∂Φ(γ,x)/∂γ from ∂Φ(γ,x/r)/∂γ 
follows (9) as 
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processing it M-times, successively for m = M, M-1,…,1. This recursive formula contains (9) as its 
inner part. During evaluating (6) the successive increments are used to obtain temporal errors enabling 
to stop the summation process. A possible Matlab function dexpmt listing is shown below. 
%********************************************************************************************* 
function [F,dF]=dexpmt(M,dM)       % by Lubomír Brančík, 2008 
% Scale M by power of 2 so that its norm is < 1/2 
[f,e]=log2(norm(M,'inf')); 
r=max(0,e+1); 
M=M/2^r; dM=dM/2^r; 
% Taylor series expansion of exp(M) and diff[exp(M)] 
FM=eye(size(M)); dFM=dM; 
F=FM+M; dF=dM; 
l=1; n=1; 
incF=1; 
while incF>1e-16 
    n=n+1; l=l*n; 
    FM=FM*M; 
    dFM=dM*FM+M*dFM; 
    dF=dF+dFM/l; 
    F=F+FM*M/l;                         
    incF=sum(sum(abs(FM)+abs(dFM))); 
end 
% Undo scaling by repeated squaring 
for k=1:r 
    dF=dF*F+F*dF; 
    F=F*F; 
end 
%********************************************************************************************* 

Calling the function as [F,dF]=dexpmt(M,dM); leads to the evaluation of both matrix exponential 
function (stored in F) and its derivative (stored in dF), with M and its derivative dM as arguments. 



3 Augmented Matrix Utilization 
On principle the matrix exponential function (4) figures in the solution of the first-order matrix 

ordinary differential equation 
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γ
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namely               
( , ) ( , ) ( ,0)x xγ = γ γW WΦ ,                       (12) 

with W(γ,0) as an initial condition. A further technique is based on the concept in [4]. When putting 
together (12) with its first derivative with respect to γ of the form 
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then only one, an augmented matrix equation, can be written as 
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Similarly, combining (11) with its first derivative with respect to γ of the form 
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we get only one, an augmented matrix differential equation, in the form 
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The solution of the last differential equation can be written as 
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with the same initial conditions as are in (14). Now denoting Ψ(γ,x) = [Ψij(γ,x)], i,j = 1,2, as a transient 
matrix, see the right side of (17), and comparing it with the system matrix in (14), ∂Φ(γ,x)/∂γ is equal 
to the homothetic submatrix Ψ21(γ,x). The derivative ∂M(γ)/∂γ can be stated easily. Besides, by using 
a Matlab language, the expm built-in function based on Padé approximation and scaling and squaring 
can be utilized with advantages to determine the transient matrix Ψ(γ,x). A possible Matlab function 
dexpma listing is shown below, calling the function corresponds to the preceding method. 
%********************************************************************************************* 
function [F,dF]=dexpma(M,dM)       % by Lubomír Brančík, 2008 
N=length(M); 
% Creating augmented matrix 
AM=[M,zeros(N);dM,M]; 
% Matrix exponential function of augmented matrix – usage of Matlab expm 
PSI=expm(AM); 
% Extracting F and dF from PSI 
F=PSI(1:N,1:N); 
dF=PSI(N+1:2*N,1:N); 
%********************************************************************************************* 

4 Eigenvalues Decomposition 
An another Matlab function can be utilized to get a matrix exponential function derivative, 

namely the eig built-in function for the matrix eigenvalues and eigenvectors calculation. A procedure 
is based on a concept in [5]. Let us assume M(γ) having distinct eigenvalues qj(γ), with associated 



eigenvectors uj(γ), j = 1,2,...,N. Now creating a diagonal matrix Q(γ) = diag(q1(γ),q2(γ),...,qN(γ)) and 
a modal matrix U(γ), composed of uj(γ) as its columns, a similarity transform leads to  

 -1( ) ( ) ( ) ( )γ = γ γ γM U Q U  .             (18) 

Then, the matrix exponential function (4) can be expressed as 
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and its first derivative as [5] 
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where hij(γ) are the (i,j)-th elements of the matrix 
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The derivative ∂M(γ)/∂γ can be stated easily. The calling Matlab eig function with the argument 
M(γ) will return both Q(γ) and U(γ) matrices. In case of repeated eigenvalues a more complex method 
based on a Jordan canonical decomposition should be applied instead, however, it happens rarely in 
practice [4, 5]. A possible Matlab function dexpme listing is shown below, its calling corresponds to 
the first method. 
%********************************************************************************************* 
function [F,dF]=dexpme(M,dM)       % by Lubomír Brančík, 2008 
% Eigenvalues/eigenvectors decomposition - usage of Matlab eig 
[U,Q]=eig(M); 
eQr=exp(diag(Q)); 
H=U\dM*U; 
P=diag(diag(H).*eQr); 
for i=1:length(H)-1 
    for j=i+1:length(H) 
        RQ=(eQr(i)-eQr(j))/(Q(i,i)-Q(j,j)); 
        P(i,j)=H(i,j)*RQ; P(j,i)=H(j,i)*RQ; 
    end 
end 
F=U*diag(eQr)/U; 
dF=U*P/U; 
%********************************************************************************************* 

5 Laplace Transform Approach 
This technique is based on the fact that the derivative ∂Φ(γ,x)/∂γ is easier to find after a Laplace 

transform of the matrix exponential function with respect to x is performed. It means its q–domain 
image is first found, then differentiated and finally inverted into the x–domain again. A commutativity 
property of the integration and derivative operations leads to the equality 
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where the Laplace transform can analytically be stated as 
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with I as an identity matrix. Based on (23) and (24), and doing some arrangements, the result is 
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The derivative ∂M(γ)/∂γ can be stated easily. The inverse Laplace transform has to be done 
numerically in general. To guarantee the sufficiently fast convergence the scaling and squaring are 
applied in according to (8) – (10). The matrix exponent part is scaled to obtain its Euklidian norm 
||M(γ)x/r)|| < 0.5. In such a case the inverse Laplace transform is solved for x = 1. It is possible to use 
various types of NILT techniques, see e.g. [6, 7]. Here, a NILT based on approximation of exp(qx) in 
the ILT Bromwich integral by a specially created infinite series, in conjunction with Euler transform, 
is applied [7]. A possible Matlab function dexpml listing is shown below, its calling follows the first 
method. Due to the NILT used, however, this function is applicable for real matrices M only. 

%********************************************************************************************* 
function [F,dF]=dexpml(M,dM)       % by Lubomír Brančík, 2008 
N=length(M); 
% Scale M by power of 2 so that its norm is < 1/2 
[f,e]=log2(norm(M,'inf')); 
r=max(0,e+1); 
M=M/2^r; dM=dM/2^r; 
% Setting up parameters of the NILT method 
nsum=200;                          % number of terms in a basic sum 
ndif=10;                           % number of terms for Euler transform 
a=8;                               % error boundary proportional to exp(-4*a) 
nd=1:ndif; 
eul=fliplr(cumsum(factorial(ndif)./factorial(ndif+1-nd)./factorial(nd-1))); 
kn=(-1).^(1:nsum+ndif); 
F=inv(a*eye(N)-M)/2; 
dF=2*F*dM*F; 
for n=1:nsum 
    qr=a+j*n*pi; 
    LFr=inv(qr*eye(N)-M); 
    qi=a+j*(n-0.5)*pi; 
    LFi=inv(qi*eye(N)-M); 
    F=F+kn(n)*(real(LFr)+imag(LFi)); 
    dF=dF+kn(n)*(real(LFr*dM*LFr)+imag(LFi*dM*LFi)); 
end 
Fe=zeros(N); 
dFe=zeros(N); 
for n=nsum+1:nsum+ndif 
    qr=a+j*n*pi; 
    LFr=inv(qr*eye(N)-M); 
    qi=a+j*(n-0.5)*pi; 
    LFi=inv(qi*eye(N)-M); 
    Fe=Fe+kn(n)*(real(LFr)+imag(LFi))*eul(n-nsum); 
    dFe=dFe+kn(n)*(real(LFr*dM*LFr)+imag(LFi*dM*LFi))*eul(n-nsum); 
end 
F=exp(a)/2*(F+Fe/2^ndif); 
dF=exp(a)/2*(dF+dFe/2^ndif); 
% Undo scaling by repeated squaring 
for k=1:r 
    dF=dF*F+F*dF; 
    F=F*F; 
end 
%********************************************************************************************* 

6 Convolution Integral Evaluation 
This method is a consequence of the Laplace transform approach in the last section. Namely, an 

argument of the inverse Laplace transform in (25) has the form of a product of matrices, therefore it 
can formally be transformed into the original domain through a convolution integral. Taking beside 
(24) into account the result is (see also [5]) 
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where u stands for an integration variable. The derivative ∂M(γ)/∂γ can be stated easily. The above 
integral could then be evaluated numerically, with an accuracy dependent on the method applied. In 
[5], however, an efficient technique is developed whose accuracy depends on evaluation of respective 
matrix exponential function Φ(γ,x) and on inversion of a specially built-up matrix. Namely, denoting 
M(γ) = [mij(γ)], i,j = 1,2,…, N, the last equation can be expressed as 
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(28)

with Bij as a square matrix with the (i,j)-th element 1, while 0 elsewhere. Denoting the integral in (27) 
as Sij(γ,x), it is valid 
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where Cij(γ,x) = BijΦ(γ,x) - Φ(γ,x)Bij is a commutator, and Rk
N(γ) coefficients and their derivatives w.r. 

to mij(γ) can be found via processing the characteristic polynomial of M(γ) (Matlab function poly can 
be utilized), or as the sums of certain subdeterminants of M(γ), see [5] for details. The inverse matrix 
in (28) must exist to be able to apply the method. This condition is fulfilled if the eigenvalues of M(γ) 
are distinct [5]. The Φ(γ,x) can be evaluated by Matlab built-in functions, either by expm directly or 
by eig through formula (19). A possible Matlab function dexpmc listing is shown below, its calling 
corresponds to the first method. 

%********************************************************************************************* 
function [F,dF]=dexpmc(M,dM)       % by Lubomír Brančík, 2008 
F=expm(M); 
N=length(M); 
Rs=poly(M); 
IS=zeros(N); 
for k=1:N 
    IS=IS+k*Rs(N-k+1)*M^(k-1); 
end 
SS=zeros(N); 
for i=1:N 
    for j=1:N 
        B=zeros(N); 
        B(i,j)=1; 
        C=B*F-F*B; 
        Su=zeros(N); 
        for u=1:N-1 
            Sk=zeros(N); 
            for k=u+1:N 
                Sk=Sk+(k-u)*Rs(N-k+1)*M^(k-u-1); 
            end 
            Su=Su+Sk*C*M^(u-1); 
        end 
        Sk=zeros(N); 
        for k=1:N 
            K=N-k+1; 
            if i==j 
                if K==1 
                    dR=1; 
                else 
                    DC=nchoosek([1:i-1,i+1:N],K-1); 
                    dR=0; 
                    for r=1:size(DC,1) 
                        dR=dR+det(M(DC(r,:),DC(r,:))); 
                    end 
                end 
            else 
                if K==1 
                    dR=0; 
                elseif K==2 
                    dR=-M(j,i); 
                else 
                    DC=nchoosek([1:min(i,j)-1,min(i,j)+1:max(i,j)-1,max(i,j)+1:N],K-2); 
                    dR=0; 
                    for r=1:size(DC,1) 
                        dR=dR-det(M([j,DC(r,:)],[i,DC(r,:)])); 
                    end 
                end 
            end 
            Sk=Sk+(-1)^(N-k)*dR*M^(k-1); 
        end 
        SS=SS+dM(i,j)*(Sk*F-Su); 
    end 
end 
dF=IS\SS; 
%********************************************************************************************* 



7 Padé Approximation Method with Scaling & Squaring 
As was pointed out earlier the Matlab built-in function expm uses a Padé approximation 

method in conjunction with scaling and squaring techniques [8]. A similar method can be applied to 
dedermine the matrix exponential function derivative. Let us consider the Padé approximation of the 
matrix exponential function (4) as 

             1( , ) ( , ) ( , )pq pqx x x−γ = γ γD N&Φ  ,                (29) 
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1

1( , ) ( , )( , ) ( , ) ( , )pq pq
pq pq

x xx x x
γ γ γ

−
−∂ γ ∂ γ∂ γ

= γ + γ
∂ ∂ ∂

D N
N D&

Φ   .        (31) 

The substitution for ∂Dpq
-1(γ,x)/∂γ and further arrangements lead to a formula 
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result directly from (30) and ∂Mk(γ)/∂γ can be stated by the recursive formula (7). To guarantee the 
sufficiently fast convergence the scaling and squaring are applied in according to (8) – (10). Here the 
matrix exponent part is scaled to get its Euklidian norm ||M(γ)x/r)|| < 0.5. Besides, it is convenient to 
choose p = q in the sums (30) and (33) which leads to a good numerical stability and a simplification. 
In practice, p = q = 6 is usually sufficient choice, as e.g. the Matlab expm built-in function uses. The 
generalized Matlab function dexpm has been developed based on the above theory. Calling the 
function corresponds to the first method. 

%********************************************************************************************* 
function [F,dF]=dexpm(M,dM)       % by Lubomír Brančík, 2008 
% Scale M by power of 2 so that its norm is < 1/2 
[f,e]=log2(norm(M,'inf')); 
r=max(0,e+1); 
M=M/2^r; dM=dM/2^r; 
% Pade approximation of exp(M) and diff[exp(M)] 
X=M; Y=dM; 
c=1/2; 
F=eye(size(M))+c*M; dF=c*dM; 
D=eye(size(M))-c*M; dD=-c*dM; 
q=6; 
p=1; 
for k=2:q 
   c=c*(q-k+1)/(k*(2*q-k+1)); 
   Y=dM*X+M*Y; 
   X=M*X; 
   cX=c*X; cY=c*Y; 
   F=F+cX; dF=dF+cY; 
   if p 
     D=D+cX; dD=dD+cY; 
   else 
     D=D-cX; dD=dD-cY; 
   end 
   p=~p; 
end 
F=D\F; 
dF=D\(dF-dD*F); 
% Undo scaling by repeated squaring 
for k=1:r 
    dF=dF*F+F*dF; 
    F=F*F; 
end 
%********************************************************************************************* 



8 Concluding Comments 
The paper has followed rather theoretical work [9] where the above stated methods have been 

collectively summarized for purposes of MTL systems simulation. Here, the techniques are stated 
more precisely, while describing them in more general notation. Moreover, possible Matlab listings of 
all these techniques programmed in the form of M-file functions are presented. All the methods give 
both matrix exponential function (F) and its first derivative (dF) as the results, while taking respective 
matrix (M) and its first derivative (dM) as the arguments. The matrices M can be complex in general, 
which is just the case M ≡ M(s) needed in the MTL systems simulation. The only exception was the 
Matlab listing in the Laplace transform approach, but it can also be modified to enable it. One can see  
another generally usable LT approach e.g. in [10]. An error analysis based on the second-order chain 
matrices (2), with known analytical solution expressed through the hyperbolic functions, can be found  
in [9]. Table 2 shows the mean values of relative errors obtained. 

TABLE 2. MEAN VALUES OF RELATIVE ERRORS 

Taylor series expansion Augmented matrix utilization Eigenvalues decomposition 
1310−≈  1310−≈  1510−≈  

Laplace transform approach Convolution integral evaluation Padé approximation method 
1210−≈  1510−≈  1310−≈  
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