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Abstract

The paper is focused on the mortar finite element method for solving linear

elliptic problems in 2D. The mortar finite element method is a nonconforming

domain decomposition technique tailored to handle problems posed on domains

that are partitioned into independently triangulated subdomains. In the contri-

bution we explained the principle and properties of the method. A significant

part of the paper is dedicated to the implementation of the mortar method in

the Matlab system. The numerical results are showing both the principle and

the possibility of practical use of the method.

1 Introduction

The finite element method is applicable to a wide range of physical and engineering problems
which can be described by means of partial differential equations. The mortar finite element
discretization is a discontinuous Galerkin approximation. The functions in the approximation
subspaces have jumps across subdomain interfaces and are standard finite element functions
when restricted to the subdomains. The jumps across subdomains interfaces are constrained
by conditions associated with one of the two neighboring meshes so that a weak continuity
condition must be fulfilled. Because of the discontinuity on the interface we classify the mortar
finite element method as a nonconforming finite element method (see [6]).

Mortar finite elements were first introduced in 1994 by Christine Bernardi, Yvon Maday
and Anthony T. Patera in [1]. Our paper is focused on the mortar finite element method in two
dimensions and its implementation in the Matlab system. Most of the literature describing the
mortar finite element method deal with the geometrically conforming partition, which is easier.
Therefore, this paper is focused on the nonconforming case.

2 Mortar Finite Element Method

In this section we briefly describe the mortar finite element method in two dimensions. Let
Ω ⊂ R

2 be a polygonal computational domain. We decompose the domain into P nonoverlapping
polygonal subdomains

Ω =

P⋃
i=1

Ωi, Ωj ∩ Ωk = ∅ for j 6= k, j, k = 1, . . . , P.

The partition can be:

• Geometrically conforming – The intersection between two closure of any two subdomains
Ωi ∩ Ωj , i 6= j is either an entire edge, a vertex or empty. Figure 1 shows an example of
the partition.

• Geometrically nonconforming – All the other cases. See example of the nonconforming
partition in Figure 2.
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Figure 1: Example of geometrically conforming partition of Ω into subdomains Ωi.
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Figure 2: Example of geometrically nonconforming partition of Ω into subdomains Ωi.

The subdomains Ωi form together a coarse mesh of the whole domain Ω. We discretize
each subdomain by triangular elements known from the finite element method. The size of the
triangles can be chosen with regard to the problem. We use finer mesh in subdomains, where
big changes in behaviour of the solution are expected, etc. The resulting triangulation can be
nonmatching across the interfaces of the subdomains, as you can see in Figure 4.

We define the interface Γ between subdomains Ωi as a closure of the union of the parts of
the boundaries of ∂Ωi, i = 1, . . . P , that are interior to Ω

Γ = ∪P
i=1

(∂Ωi \ ∂Ω). (1)

The interface can be considered also as a set of nodes, that belong to the boundary of at least
two subdomains.

We denote
V h(Ω) = V h

1 (Ω1) × V h
2 (Ω2) × · · · × V h

P (ΩP ) (2)

the space of mortar finite elements defined on Ω. We consider the low order basis functions, for
example the piecewise linear basis functions. V h

i (Ωi) is a finite element space in each subdomain
Ωi. V

h
i (S) is a restriction of functions from V h to a set S.

For further analysis, we introduce some more notation. A main edge will represent a side
of a planar n-agle, see Figure 3. A square has four main edges, n-agle has n main edges. Let
Γij be an open common edge or a part of an edge of two adjacent subdomains Ωi and Ωj

Γij = Ωi ∩ Ωj . (3)

The edge Γij is a part of a main edge (or is a main edge) both of the subdomain Ωi and Ωj. We
choose the main edge of one subdomain as a master (mortar) and the main edge of the second
subdomain as a slave (nonmortar). We use a new notation:

• Mortar edge γ – If it belongs to a particular main edge of a boundary ∂Ωi, we denote it
γi.

• Nonmortar edge δ – If it belongs to a particular main edge of a boundary ∂Ωj , we denote
it δj .



Figures 3 and 4 show examples of situations, that can occur on the interface. If we consider
geometrically conforming partition of Ω, it is obvious, that for two subdomains Ωi and Ωj with
a commom edge holds an equality γi = Γij = δj , or γj = Γij = δi (it’s important which edge
is chosen as a mortar), see Figure 4. The situation is more complicated in the nonconforming
case. There is arising a question, how to choose mortar and nonmortar edges. An example of
such a choice is in Figure 5. It can be proven that the partition always exists (see [3] or [6]).

In term of a new notation we can write:

Γ =

K⋃
k=1

γk, γm ∩ γn = ∅, if m 6= n, m, n = 1, . . . ,K, (4)

where K is the number of all mortar edges. Obviously also

Γ =

L⋃
l=1

δl, δm ∩ δn = ∅, if m 6= n, m, n = 1, . . . , L, (5)

where L is the number of all nonmortar edges.
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Figure 3: Interface Γij of two subdomains Ωi and Ωj and signification of edges as mortar and
nonmortar.
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Figure 4: Mortar edge γ and nonmortar edge δ on the interface Γij of two subdomains Ωi and
Ωj.

It remains to solve the most important point of the method - the situation on the interface
Γ. It’s necessary to join somehow the values of the searched function (we call it mortar function)
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Figure 5: Example of choice of mortar edges in geometrically nonconforming case (mortar edges
are blue).

on the interface. Instead of a pointwise continuity we require fulfilment of a weak continuity
condition. The exact formulation will follow after some necessary definitions.

Each nonmortar edge δl belongs to exactly one subdomain, we denote it Ωl. Let Γl be the
union of q parts of the mortar edges γl,i which correspond geometrically to nonmortar edge δl

Γl =

q⋃
i=1

(γl,i ∩ δl). (6)

For each nonmortar edge δl we choose a space of test functions Ψh(δl), which is a subspace
of the space V h

l (δl), that is a restriction of functions from V h
l (Ωl) to δl. So if we choose piecewise

linear basis functions, V h
l (Ωl) will be a space of piecewise linear functions. Ψh(δl) will be a

restriction of functions from V h
l (Ωl) to δl with requirement that these continuous, piecewise

linear functions are constant in the first and last mesh intervals of δl (see Figure 6). Other
possibility how to establish the space of test functions is described in [7].

Figure 6: Test functions on δl.

We define the mortar projection on δl as πq1,q2
(ul) : L2(Γl) → V h

l (δl). For two arbitrary
values q1 and q2 and a function ul ∈ L2(Γl) it satisfies

∫

δl

(ul − πq1,q2
(ul))ψ ds = 0 ∀ψ ∈ Ψh(δl). (7)

The condition means, that the jump of the mortar function across each nonmortar edge must
be orthogonal (in L2(Γl)) to the space of test functions defined on δl. The condition is called
the weak continuity condition or the mortar condition.



3 Formulation of the Mortar Problem

3.1 Variational (Weak) Formulation of the Mortar Problem

Let us remind a variational (weak) formulation of a Poisson problem in two dimensions. We
need to find a solution u ∈W 1

2 (Ω) of the Poisson equation

−4u = f in Ω ⊂ R
2, (8)

u = g1 on ∂ΩD,
∂u

∂n
= g2 on ∂ΩN , (9)

where f ∈ L2(Ω), g1 ∈ L2(∂ΩD), g2 ∈ L2(∂ΩN ). The solution u ∈W 1
2 (Ω) must be from the set

of admissible functions

Vg = {u ∈W 1
2 (Ω) : u = g1 na ∂ΩD in the sense of traces} (10)

and for every test function v must satisfy

a(u, v) = F (v) ∀v ∈ V, (11)

where
V = {v ∈W 1

2 (Ω) : v = 0 on ∂ΩD in the sense of traces}. (12)

a(u, v) =

∫

Ω

[gradu grad v] dΩ, (13)

F (v) =

∫

Ω

fv dΩ +

∫

∂ΩN

g2v dS. (14)

We can formulate the problem (8), (9) in terms of a decomposition of the domain Ω into
subdomains Ωi, i = 1, 2, . . . , P and by using an appropriate mortar finite element space V h. We
appear from the weak formulation (11) of the problem (8), (9) and we rewrite it to the discrete
form.

We know, that V h
i (Ωi) ⊂W 1

2 (Ωi), i = 1, . . . , P . Thus, we can write

aΓ(u, v) = F Γ(v) ∀v ∈W
1,0
2

(Ω). (15)

aΓ(·, ·) is a bilinear form, which is defined as a sum of contributions from the particular subdo-
mains

aΓ(u, v) =

P∑
i=1

∫

Ωi

[grad u grad v] dΩi (16)

and

FΓ(v) = F (v) =

∫

Ω

fv dΩ +

∫

∂ΩN

g2v dS. (17)

A variational (weak) formulation of the mortar problem represents such a task: Find uh ∈ V h

which satisfies
aΓ(uh, vh) = F Γ(vh) ∀vh ∈ V h. (18)

The existence and uniqueness of the solution of (18) follows i.a. from the Lax-Milgram lemma.



3.2 Mixed Formulation of the Mortar Problem

First, we present some findings relating to dual spaces. We know, that V h
i (Ωi) ⊂ W 1

2
(Ωi). A

restriction of a mortar function u to a nonmortar edge δl belongs to the space W
1/2

2
(δl). The

space of test functions Ψh(δl) can then be a subset of the dual space of space W
1/2

2
(δl) with

respect to the L2 inner product, thus Ψh(δl) ⊂W
−1/2

2
(δl).

For introduction of a mixed formulation we use the mortar condition (7), whose satisfaction
is demanded on the interface. We denote [ul] the jump of uh ∈ V h across δl. The test functions
from the mortar condition can be considered as Lagrange multipliers. A function u belongs to
the space V h if and only if for all the nonmortar edges δl and for all the Lagrange multipliers
µl, which form a basis of Ψh(δl), holds

∫

δl

[ul]µl ds = 0. (19)

From the first paragraph of this subsection results, that [ul] ∈W
1/2

2
(δl). Lagrange multi-

pliers µl must then be from the dual space W
−1/2

2
(δl). Let Mh =

∏
l Ψ

h(δl) ⊂
∏

lW
−1/2

2
(δl) and

µh ∈Mh, where µh = (µl)l=1:L, L is the number of nonmortar edges. We define a bilinear form

b(uh, µh) =

L∑
l=1

∫

δl

[uh]µlds. (20)

A function uh is a mortar function if and only if

b(uh, µh) = 0 ∀µh ∈Mh. (21)

We can rewrite the discrete problem (18) to the mixed formulation: Find a couple (uh, λh) ∈
V h ×Mh which satisfies

aΓ(uh, vh) + b(vh, λh) = F Γ(vh) ∀vh ∈ V h,

b(uh, µh) = 0 ∀µh ∈Mh.
(22)

As well as in other mixed formulations, it is important to satisfy the Brezzi-Babuška
condition (see [7]) also in formulation (22). This is important for the existence of the solution
and for the error estimate.

4 Implementation of the Mortar Finite Element Method

We describe briefly the key points of the implementation of the mortar finite element method
in the Matlab system. We started from the program [4], which deals with the conforming
partition of the computational domain into squares and rectangles, whose sides are parallel
to the coordinate axes. The generalization of the program to the nonconforming case is not
a trivial task. Our program solves the Poisson or Laplace equation in two dimensions with
Dirichlet boundary condition and can deal with polygonal computational domains, that can be
divided into general polygonal convex subdomains. Since the conforming partition is a specific
case of the nonconforming partition, it’s obvious, that the program can handle with conforming
case also.

The input data are the geometry of the computational domain, the right hand side and the
Dirichlet boundary condition. The geometrical data contain informations about the subdomains
- each subdomain and its triangulations is inscribed with a triplet of matrices p, e, t representing
matrices of points, edges and triangles. It’s necessary to save the information on the mutual



relationships of the edges and subdomains. We must distinguish the edges on the boundary
because of the fulfilment of the boundary condition and we need to know the adjacent edges
and subdomains of each edge and subdomain.

4.1 Mutual Relationship of the Edges

So let us consider a polygonal computational domain Ω. We divide the domain into polygonal
subdomains Ωi. There are, in fact, two types of nonconforming partitions, see Figure 2. In the
first case, the subdomains are squares and rectangles, whose sides are parallel to the coordinate
axes. The second case is more general – the subdomains are general n-agles or rectangles, whose
sides are not parallel to the coordinate axes. Both cases can be combined.

In the following text we will use the terms edge and main edge, see Section 2 for the
explanation. The edges and their belongings to the main edges are described in matrices e. The
comparison of the mutual relationships in the input geometry data is realized through the edges,
not the main edges. We look for the parallelism of the edges. The parallelism is indicated by
the identical multiples of x- and y- component of the directional vectors. If an edge is parallel
to a coordinate axis, we can profit from the fact, that one component of its directional vector
is equal to zero. We must identify the edges, that are overlapping. The necessary condition of
the overlapping is, that the edges lie on the same line (a special case of parallelism). Two edges
can overlap with parts of the edges, one edge can be inside the second one or they can coincide.
The information on the mutual relationships of the edges and subdomains is stored in a matrix
by a numerical value. On the basis of described information we can do the partition into mortar
and nonmortar edges.

4.2 Division of the Edges into Mortar and Nonmortar

We divide the main edges, that are not lying on the outer boundary, into mortars and non-
mortars. We have already mentioned, that the partition is always possible. But there is no
universal instruction, how to choose the mortars. We introduce some possibilities. First of all,
we focus on the conforming case with rectangular subdomains. Each main edge is either on the
outer boundary or has one adjacent main edge with which it coincides. The choice of mortar is
without any problems. Let’s show two possibilities:

• Neumann-Dirichlet partition – Each subdomain has either all the main edges mortar or
nonmortar.

• We sign the first two main edges of the subdomain as mortar, the second two as nonmortar.
We omit the main edges on the boundary.

The situation is more complicated in the nonconforming case. Neither of the above-mentioned
methods can be used. With regard to a lack of information in a literature we use our own way
of a choice of the mortar edges.

We will do the following. We go through the particular subdomains in the same sequence
as they were entered. If a main edge is unsigned yet and if it is possible, we sign the main edge
as mortar and its adjacent main edge (or edges) as nonmortar. So we go through all the main
edges of all the subdomains. If a main edge is once called mortar (or nonmortar), we don’t
change it again. The process of signing of the main edges is shown in Figure 7.

The information on the adjacent edges is known from the previous research and is stored
in a matrix. On the basis of a detection of an overlap there is assigned a type of the appropriate
edge and of the adjacent edge. It’s necessary to verify if one of these two edges already has
a value (mortar or nonmortar). In this case, we must keep the value and the type is assigned



only to the second edge. The edges, that belong to the same main edge, are of the same type.
The type (mortar, nonmortar, outer boundary) is stored as a numerical parameter added in the
matrices e (0 = outer boundary, 1 = nonmortar edge, 2 = mortar edge), see Figure 7.
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Figure 7: Process of signing of main edges (mortar edges are blue (2), nonmortar edges are grey
(1) and 0 is for edges of outer boundary).

4.3 Assembling

We briefly describe the assembling of the stiffness matrix and the right hand side. We add in
the assembling the requierement of the fulfilment of the mortar condition (see Section 2) also.
First, we need to do some auxiliary steps. Let us consider all the nodes of all the subdomains.
For further computation we divide the nodes into several groups - in the local meaning (within
the subdomains) and also in global meaning (in terms of the whole computational domain). We
divide the nodes into active and inactive, into interior and boundary, etc. We mention closely
the global division of the nodes. We introduce a set of global active interior nodes, that contains
interior nodes of all the subdomains, interior nodes of the mortar edges and all the corner nodes,
that don’t lie on the outer boundary. All the nodes lying on the outer boundary are called global
active boundary nodes, etc. The sense of these sets will be clear later.

For each mortar (master) edge we assemble the so-called master matrix and for each



nonmortar (slave) edge the so-called slave matrix, that introduce the right and left hand side
matrix in applying the mortar condition. In the computation of the master matrix we deal with
the test functions on the nonmortar edge described in Section 2. Since the test functions have
zero values at the end points of the nonmortar edges, it’s necessary to have the nonmortar edges
with at least three nodes (including the end nodes).

Each subdomain is first assembled in a usual way as in the case of the finite element
method. The values on the subdomain edges are re-counted according to whether the appropriate
main edge is mortar or nonmortar.

4.4 Solving the Resulting System of Equations

For solving the resulting system of equations, we use the conjugate gradient method with pre-
conditioning, that is implemented in Matlab. This method is highly suitable for solving system
of equations with symmetric positive definite and sparse matrix. The method is convenient for
large matrices because of the iterative character of the method. The preconditioning accelerates
the computation and improves stability.

The system of equations is solved only for the global active interior nodes. After the
computation it’s necessary to compute the solution on the outer boundary, where the fulfilment
of the Dirichlet boundary condition is required, and the solution in the inactive (nonmortar)
nodes, which is computed by the mortar projection.

5 Numerical Results

In this section, we present two practical examples showing both the principle and the possibility
of practical use of the method. The examples are solved by our program for solving linear elliptic
partial differential equations in 2D by the mortar finite element method.

As first example, we consider a Poisson problem on a general computational domain Ω
(see Figure 8):

−4u = 30 on Ω,

u = 0 on Γ0, (23)

u = 1 on Γ1.

Γ0

Γ1

Figure 8: Computational domain Ω for problem (23).



The partition of the computational domain with the appropriate nonmatching mesh is on
Figure 9 and the solution of the problem (23) is displayed in Figures 10 and 11. This example
serves as an illustration of the principle of the mortar finite element method. There is shown
the commonness of the usage of the method.
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Figure 9: Partition of Ω for problem (23). Figure 10: Solution of (23).
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Figure 11: Solution of (23).



As the second example, we consider a Laplace problem:

−4u = 0 on Ω = {(x, y) ∈ R
2 :

1

4
< x2 + y2 < 1},

u(cosϕ, sinϕ) =
5π

4
− ϕ, ϕ ∈ (

π

4
,
9π

4
), (24)

u(
1

2
cosϕ,

1

2
sinϕ) =

5π

4
− ϕ, ϕ ∈ (

π

4
,
9π

4
).

Figures 12(a),(b) show the partition of the computational domain with two versions of
the appropriate mesh. The solution of the problem (24) is displayed in Figures 13(a),(b) and
14(a),(b). The usage of the mortar finite element method enables a choice of a mesh with respect
to the discontinuity of the boundary condition. The subdomain with the jump can be meshed
much finer than the other one.

(a) (b)

Figure 12: Partition of Ω and two versions of the appropriate mesh for problem (24).
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Figure 13: Solution of (24) for two versions of the appropriate mesh.
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Figure 14: Solution of (24) for two versions of the appropriate mesh.
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