STUDIUM HLADINOVÉHO ELEKTROSTATICKÉHO ZVLÁKŇOVÁNÍ

J. Kula, M. Tunák, D. Lukáš, A. Linka

Technická Univerzita v Liberci

Abstrakt

V posledních letech se uplatňuje výroba netkaných, nanovlákenných vrstev, metodou hladinového elektrostatického zvlákňování. Při tomto způsobu vlákna vznikají pod vlivem vnějšího elektrostatického pole přímo z hladiny polymerního roztoku. Místo vzniku tzv. trysek se zdá být nahodilé, přesto se řídí jistými fyzikálními zákony, které popisuje nová teorie hladinového zvlákňování. K jejímu ověření byla učiněna série experimentů na speciálním přípravku. K určení polohy trysek bylo zvoleno optické snímání procesu a následná analýza obrazových dat prostřednictvím vývojového prostředí Matlab.

Princip hladinového zvlákňování

Elektrostatické zvlákňování umožňuje výrobu textilních vláken o průměrech v řádu stovek nanometrů. Tato vlákna jsou používána v netkaných textilních vrstvách a jsou vhodná v aplikacích jako je tkáňové inženýrství, řízené dávkování léčiv, tepelné, hlukové filtry a další. Jev, během kterého dochází k vzniku takto jemných vláken, je založen na aplikaci vysokého napětí v okolí polymerního roztoku. Tvarové změny, které lze na kapičce roztoku pozorovat, způsobí při určité intenzitě elektrického pole zánik její soudržnosti a vznik trysek, prostřednictvím kterých dochází k transportu materiálu mezi kapilárou a kolektorem. Chování kapky na ústí kapiláry ve vnějším elektrostatickém poli bylo popsáno již na začátku druhé poloviny minulého století [4]. Produktivita zvlákňování pomocí kapiláry, nebo soustavy kapilár je z průmyslového hlediska nedostatečná. Snaha o její zvýšení vedla k poznání, že trysky mohou vznikat také z hladiny, která je téměř rovná. Na moderních strojích je proto používána tzv. metoda zvlákňování z volné hladiny polymeru. Při tomto způsobu výroby nanovláken dochází k tvorbě trysek na povrchu rotujícího válce, smáčeného roztokem polymeru. Trysky, ze kterých cestou ke kolektoru vlákna vznikají, se mohou objevovat nahodile v kterémkoli místě hladiny. Pro potřeby teorie hladinového zvlákňování [1] a jejího experimentálního ověření byl uvažován zjednodušený případ v tom smyslu, že hladina polymeru byla sevřena mezi dvě kovové destičky pomocí tzv. lištového spineru.

Obrázek 1: Model a snímek lištovém spineru, λ značí vzdálenost sousedních trysek [mm].

Lištový spiner umožňuje dosáhnout lineární, téměř jednorozměrné hladiny, na které dochází k samoorganizaci trysek pouze v rovině spineru. Pohyb hladiny do ostatních směrů je takřka dokonale potlačen. Vertikální zvlnění hladiny je popsáno obecnou rovnicí postupného vlnění, tedy reálnou částí komplexní proměnné ξ :

$$\xi_{(x,t)} = A e^{i(\omega t - kx)},\tag{1}$$

kde A, ω, k, t představují amplitudu, úhlovou frekvenci, vlnočet a čas. Teorie samoorganizace trysek na volné hladině polymeru vychází kromě vztahu (1) také z dispersního zákona pro čtverec úhlové frekvence jednorozměrné vlny pod vlivem elektrického a gravitačního pole:

$$\omega^2 = (\rho g + \gamma k^2 - \varepsilon E_0^2 k) \frac{k}{\rho},\tag{2}$$

kde $\rho, g, \gamma, k, \varepsilon, E_0$ je hustota, gravitační zrychlení, povrchové napětí, vlnočet, permitivita, intenzita elektrického pole. Z rovnice (2) vyplývá, že při dostatečném zvýšení intenzite el. pole bude $\omega^2 < 0$. V takovém případě je ω komplexní číslo a po dosazení do (1) budeme rovnici psát ve tvaru:

$$\xi_{(x,t)} = A e^{\omega t} e^{i(kx)}.$$
(3)

Úhlová frekvence tak změnila svůj fyzikální význam. Ztráta časového parametru v druhém exponentu znamená přechod od postupného vlnění k vlnění stojatému s bezmezně rostoucí, časově závislou amplitudou $Ae^{\omega t}$. Metoda určení E_0 , hodnoty kritické intenzity el. pole, při které nastává zkoumaný jev, je v teorii rovněž popsána.

Aparatura

Experimentální zařízení sestává z uzemněného lištového spineru orientovaného tak, aby hladina polymeru směřovala vzhůru ke kolektoru. Kolektor je železná deska kruhového tvaru o průměru 150mm. Vzdálenost mezi kolektorem a hladinou na spineru je 70mm. Na kolektor je přivedeno napětí v rozsahu 0-50kV, které je možné na zdroji mechanickým potenciometrem regulovat. Zásobu polymeru ve spineru udržuje injekční pumpa. Proces je snímán běžnou miniDV kamerou. Napětí elektrod sleduje převodník napění \rightarrow frekvence, jehož výstup je zpracováván zvukovou kartou PC.

Programové vybavení

Byla sestavena samostatná aplikace s grafickým uživatelským rozhraním, vytvořeným pomocí GUIDE, která umožňuje sledování aktuálně zpracovávaných dat v reálném čase, nebo také ze záznamu experimentu.

Algoritmy provádějí detekci části obrazu s vysokou informační hodnotou s ohledem na počet trysek, nalezení měřítka pro přepočet obrazových rozměrů do rozměrů skutečných, zjištění polohy trysek a sledování aktuálního napětí mezi elektrodami.

Nalezení oblasti, která bude analyzována, je provedeno automaticky po spuštění analýzy a poté vždy když nejsou získány relevantní výsledky z algoritmu pro zjištění polohy trysek. Oblast zájmu pokrývá horní část spineru, hladinu polymeru a zhruba centimetrový pruh nad hladinou, kde dochází k vývoji trysek. Důležité je určení šíře spineru, která později slouží k výpočtu skutečného rozměru λ . Poloha oblasti zájmu je určena z jasového profilu celého vstupního obrazu. Úspěšně nalezená oblast, ve které bude provedeno měření, je v náhledu na scénu označena bílým obdélníkem. Algoritmus je poměrně úspěšný, nicméně občasné odlesky světel reflektorů od hladiny polymeru mohou způsobit jeho selhání. Automatickou detekci je proto možné jednoduše vyřadit a definovat oblast kurzorem myši.

Jádro celé aplikace tvoří algoritmus pro nalezení polohy trysek. Tento algoritmus zpracovává už jen danou část scény. Na jeho vstupu je provedena lokální segmentace a morfologická

Obrázek 2: Hlavní okno aplikace. V horní části panel nabídek a tlačítka pro ovládání záznamu. Vlevo náhled na zpracovávaný obraz, v ostatních částech okna jsou textově a graficky znázorněny průběžné statistické údaje.

top-hat transformace, které společně zajišťují korekci nestejnoměrného osvětlení trysek. Dalšími morfologickými operacemi a rekonstrukcí nevýrazných trysek jsou relevantní objekty odděleny od pozadí. Výpočtem geometrických vlastností objektů jsou získány souřadnice jednotlivých trysek podle vodorovné osy spineru. Detekované trysky jsou v náhledovém okně aplikace označeny bílými značkami, jak je vidět v levé horní části obrázku 2. Před uložením je k souřadnicím přiřazena hodnota aktuálního napětí, která je asynchronně vypočtena pomocí Fourierovy transformace z tónu, který přichází na linkový vstup zvukové karty.

Obrázek 3: Prostorové zobrazení jasových úrovní obrazu. Hodnota jasu v každém bodě je promítnuta do osy z. Pohled je umístěn 30° nad rovinu x, y a je otočený podle osy z o 38° od vodorovné osy x.

Obrázek 4: Některé fáze detekce polohy trysek: (a) výřez vstupního obrazu; (b) tophat transformace; (c) lokální segmentace a další morfologické operace; (d) zvýraznění detekovaných trysek bílými obdélníky.

Aplikace během analýzy experimentu vykresluje z dostupných informací dva grafy. Jeden pro průměrnou hodnotu λ při aktuálním napětí. Druhý ukazuje vývoj λ při změně napětí, jak je vidět v pravé dolní části obrázku 2. Po skončení experimentu je možné uloženými daty pohodlně procházet a pomocí diagramu zobrazit všechny hodnoty λ , které byly při aplikaci konkrétního napětí detekovány. Naměřená data lze též porovnat s teoreticky předpovězenou křivkou (viz. obrázek 5b). Na obrázku 5b jsou současně zobrazena pořízená data a teoreticky předpovězená křivka vypočtená podle rovnic:

$$\Gamma = \frac{a\varepsilon E_0^2}{2\gamma} \tag{4}$$

$$\frac{\lambda}{a} = \frac{3\pi}{\Gamma + \sqrt{(\Gamma^2 - 3/4)}},\tag{5}$$

ve kterých a, ε , E_0 , γ , Γ představují kapilární délku, permitivitu prostředí, kritickou hodnotu intenzity elektrického pole, povrchové napětí a tzv. elektrospiningové číslo.

Obrázek 5: Naměřená data. (a) Zobrazení všech zjištěných rozestupů mezi tryskami při konstantním napětí. Na vodorovné ose jsou vyneseny snímky zachycené při napětí 43kV. V každém snímku byly zjištěny vzájemné rozestupy trysek – ty jsou vyneseny na ose svislé jako jednotlivé body. (b) Porovnání výsledků (body) s teoretickou předpovědí (křivka, která odpovídá fyzikální podstatě experimentu podle rovince (5)).

Závěr

Pro potřeby ověření teorie hladinového zvlákňování byla sestavena měřící aparatura a aplikace pro analýzu obrazových dat. S pomocí těchto prostředků byly prováděny experimenty, jejichž hlavním cílem bylo ověření závislosti vzájemné polohy trysek na intenzitě elektrostatického pole mezi uzemněným spinerem a nabitým kolektorem. Přestože je elektrospining velmi nestabilní jev, aplikace postavená na platformě Matlab dovolila zpracování velkého množství dat, ze kterého bylo možné statisticky určit chování pozorovaného systému. Rozestupy λ skutečně vykazují závislost na napětí podle rovnice (5) a první experimenty tak pravděpodobně potvrzují hypotézu hladinového elektrostatického zvlákňování. S využitím Image Acquisition Toolboxu a Data Acquisition Toolboxu je aplikace schopna pracovat s téměř jakoukoli kamerou a zvukovou kartou. Aplikace proto není vázána na konkrétní hardware a její nasazení v laboratoři spočívá pouze v kalibraci zařízení.

Reference

- [1] Lukas D., Sarkar A., Pokorny P.: Self organization of jets in electrospinning from free liquid surface a general approach, Journal of Applied Phycics, 103, 8, 15. duben 2008.
- Jirsák O., Method of Nanofibres Production From A Polymer Solution Using Electrostatic Spinning And A Device For Carrying Out the Method: Jirsák O., Sanetrník F., Lukáš D., Kotek V., Martinová L., Chaloupek J. Int.Cl.: H05B 7/00. United States Patent, 264/465; 264/468. Sep-8-2004.
- [3] Gonzalez, R., Woods, R.: *Digital Image Processing*, Prentice Hall, 2002, ISBN 0-201-18075-8
- [4] Ramakrishna, S., Fujihara K., Teo W., Lim T., Ma, Z.: An Introduction to Electrospinning and Nanofibers, World Scientific Publishing, 2005.

J. Kula Katedra Hodnocení Textilií Technická Univerzita v Liberci Studentská 2 461 17 Liberec e-mail: jiri.kula@tul.cz tel.: 48 5353465