
OPERATIONS SCHEDULING FOR MANUFACTURING
SYSTEMS WITH PARALLEL COMPUTING

M. Blaho*, M. Foltin*, P. Nagy*, M. Hudáček*, K. Kopčok**

*Institute of Control and Industrial Informatics, FEI STU

Ilkovičová 3, 812 19 Bratislava, Slovak Republic

**eProjekt Slovensko s.r.o., Nobelová 16, 836 14 Bratislava, Slovak Republic

Abstract

Some manufacturing processes can make products parallel. Many researchers work
on the problem of the maximizing manufacturing speed, operating efficiency or the
minimization of the overload of the parallel system. Parallel computing can accelerate
the optimization process with condition that the computing is much longer then
sending, receiving and handling of the computed data. This paper compares the
parallel computing in MATLAB Parallel Computing Toolbox and Java RMI.

1 Introduction
The changes in the manufacturing process come very often today. It is necessary that we adapt

to the needs of the markets. The products are usually made on the production line with the set of
sequential operations from the one machine to another. Production lines are designed for the mass
production of various types of products like house electronic or cars. On the other side some systems
can make products parallel, they share the same machines. The examples of such systems are the
telecommunications, computers or multiprocessors systems.

Another example of parallel system is the flexible manufacturing system. The basic idea is to
create the production line capable of making the products parallel with better response time to the
needs of the market and effectively make use of the expensive machines for the parallel
manufacturing. Flexible manufacturing system consists of a large number of configurable stations and
different production paths. Effective operations scheduling and controlling of such a system is
complex and difficult problem.

2 Operations scheduling
With the operations scheduling problem in real time we try to accomplish changing goals in the

production. It is necessary to think of the limited recourses and random failure of the machines.
Research of operations scheduling in flexible manufacturing systems focuses on the modeling and
optimization of the material flow. Typical examples are maximization of the manufacturing speed,
system capacity, machines usage or minimization of the system overload.

The thesis of Kopčok[1] deals with problem of operations scheduling for the parallel flexible
manufacturing system with the focus on the time minimization for the needed operations. Some
assumptions must be made:

• systems consist of multiple inputs, outputs and manufacturing machines

• processes are independent from each other and they share same machines

• for any operation there is alternative (it can be made on other machine)

• operation is processing only at one machine

• there is sufficient numbers of object for manufacturing

• loop is terminated when all products are at the output or when all operations are finished

Such system can be expressed on figure 1.

Figure 1: Illustration of the flexible manufacturing system

There are many approaches for modeling of the manufacturing systems like Petri nets or
Statecharts. Model of simple system is in the thesis of Kopčok[1]. From Petri nets systems can be
expressed in form of the matrices for example:

 (1)

For each process there is one matrix. Rows represent operation of the process. Columns
represent the machines on which operations can be made. If we can't made operation on the specific
machine there is a zero in that column. The cells represent time for the operations on each machine.
For example if we take matrix P1 then the first row and second column means that the first operation
on the second machine will take 4 unit times. The first row and second column of matrix P2 means that
the first operation on the second machine can't be made. Kopčok[1] designed two methods for
operations scheduling base on this model.

2.1 Heuristic approach
Heuristic approach is based on the heuristic search trough state space. Algorithm doesn't search

in the whole state space, but it search for optimal or near optimal path. Path is determined by the rules
which are based on assumptions. Operations are divided into two groups. First group create operations
which can be made on the multiple machines. Alternative which take minimal time is called fastest
operation time. Second group are operations that can be made on single machine and are called single
machine operations. Heuristic method consists of five rules and two exceptions.

First rule is that every operation should by make on the machine with fastest operation time if it
is possible. Second rule tells that with all operations in particular time with fastest operation time the
highest priority has the operation with longest time. It is based on assumption that if the algorithm
didn't take this alternative there could be situation where other operation with non-minimal time is
chosen. Third rule tells that every machine should be working maximum time. If there is possibility
for the machine to work it should be working. Fourth rule tells about situation when on the machine is
not possible to do operation with fastest time. In that case is operation shifted to the end of the
decision. Fifth rule solve situation that there is no fastest operation time on the machine. In that case
we take the operation with shortest time. First exception is that the single machine operations have
maximum priority. The second is that no of the mentioned rules holds. Because the algorithm is
dependent on the first machines choice it is necessary to repeat all rules with all possible starts.
Example of the heuristic method is in the thesis of Kopčok[1].

2.2 Genetic approach
Genetic algorithm is optimization method which tries to simulate the evolution in short time.

They are capable of getting away from local extreme and get near to global extreme. Genetic
algorithms search in every direction but they are time-consuming. Algorithm works with individuals in
population. Individuals represent potential solution. Each solution is evaluated with fitness function.

According to Sekaj[2] after evaluating of the fitness function next population is stochastically selected
based on the some genetic operations:

• selection (based on fitness, random, …)

• crossover (recombination)

• mutation

Crossover and mutation are also called reproduction. Genetic algorithm consists of few steps.
Choosing or generating initial population and evaluating the fitness function of each individual in that
population. Then repeatedly until termination selection of new individuals (best or random), crossover
and mutation operations, evaluating fitness function of the new individuals and finally replacing old
population with new one. Short figure of genetic algorithm is on figure 2.

Figure 2: Genetic algorithm

Genetic algorithm was used for searching optimal solution in operations scheduling. Individuals
were selected as a sequence of machines and priorities (if two operations want to be realized on the
machine). Processes matrices remain the same as in equation (1). Kopčok[1] designed matrix for
evaluation of the fitness function.

 (2)

First row represents number of the process, second operation in that process. Third row
represents state for the state of operation. If it is zero then the operation is not evaluating. Fourth row
tells us on which machine is operation executing. Fifth row shows how many units time operation will
be realized. Last row, as it was mentioned, represent priority for the process. Priority is necessary if
the are two operations want to be realized on one machine simultaneously. Each step of the fitness
function represents unit time. If state of operation don't equal zero then realization time is reduced by
one. Once realization time is zero the column is removed for better clarity. Operations of the processes
must be realized in the defined order. Example of the genetic method is in the thesis of Kopčok[1].

3 Parallel computing
Traditionally program has been written as a sequence of computations. Program ran on single

computer having a single CPU. Instructions of the program were executed one after another. Some of
today's programs try to use multiple CPUs for computations. Programs are broken into parts that can
be solved concurrently. Parts are computed on different CPUs. Compute recourses can include single
computer with multiple processors, any number of computers connected by network or both. There are
a many reasons to use parallel computing, one of them is that it save time and/or money [3]. Some
examples of the parallel computing are project like Seti@home, research of cancer, financial and
economics modeling, optimization, World community grid, data mining and others [3,4,5].

3.1 Architecture and test functions
For the testing of the parallel computations we chose genetic algorithms. Genetic algorithms are

typical example of parallel problem because they compute in every step the same fitness function with
changed inputs. Population of genetic algorithm contains several individuals. Individuals can be
computed on several client workstations. Such architecture can is expressed on the figure 3. Two
problems were computed with parallel computing. First was Rastrigin benchmark function:

 (3)

The second problem was finding optimal operations scheduling described in section 2.2. The
test was executed in laboratory for networked control systems. The hardware configuration of the
workstations was AMD Athlon64 3800+ computers with frequency 2.41GHz and 1GB operation
memory with Windows operating system.

Fig. 3: Parallel computing architecture

3.2 Matlab Parallel Toolbox
Parallel Computing Toolbox software allows you to offload work from one MATLAB session

(the client) to other MATLAB sessions, called workers. You can use multiple workers to take
advantage of parallel processing. Parallel Computing Toolbox software allows you to run as many as
four MATLAB workers on your local machine in addition to your MATLAB client session.
MATLAB Distributed Computing Server software allows you to run as many MATLAB workers on a
remote cluster of computers as your licensing allows [7,8,9,10].

The bachelor thesis of Hudáček[4] was created one client and the workers computed the fitness
function as it was described sooner. In the thesis the parfor function was used for parallel computation.
The Rastrigin function benchmark function showed no acceleration of the computations because is too
simple for parallel computing. It is because the time for computations was smaller then the sending,
receiving and handling of the computed data. The significant improvement shows the computations of
the Kopcok's genetic approach for operations scheduling of which we talk in results.

3.3 Java RMI
Java programming language is a high-level language that is platform independent (Windows,

Linux, Os X, …). The Java Remote Method Invocation (RMI) system allows an object running in one
Java virtual machine to invoke methods on an object running in another Java virtual machine. Java
RMI provides for remote communication between programs written in the Java programming
language [6].

In diploma thesis of Nagy[5] was designed Java RMI client-server application for remote
communication between the client and workers. Several classes for communication and computation
were programmed. The first test was on the Rastrigin benchmark function. As well as with Matlab, the
Rastrigin function was too simple for parallel computations and there wasn’t any betterment. The
benefit of the parallel computation with Java RMI is also to see in the computations of the Kopcok's
genetic approach for operations scheduling of which we talk in results.

3.4 Results
Flexible manufacturing system PVS 14 from Kopčok[1] was tested as we mentioned in the

Matlab and Java environments. First test compared environments in non-parallel computing. Java
environment was significant faster because it use only necessary resources. On the other side Matlab
provide easy sets of commands which facilitated work. Java was faster approximately 146 times.

Table 1: COMPARISON OF TWO ENVIRONMENTS – NOT PARALLEL

Environment 1 generation [s] 8000 generations [s]
Matlab 2.775 22198

Java RMI 0.019 156.35

Second test compare Matlab and Java environments in parallel computing. In Java environment
(T2,Z2) was still faster but our architecture of the program shows that non-parallel computing was
faster when we used one and two computers. With three and more computers we can see the
advantages of the distributed computing. Matlab environment (T1,Z1) show advantages right away.
With two computers the betterment was significant, more that 50%. From five or six computers
Matlab betterment settles. On the other side Java's environment continue rise more or less equally.
Java will probably settle near 80% too. In table 2 last two columns represent betterment from non-
parallel approach.

Table 2: COMPARISON OF TWO ENVIRONMENTS – PARALLEL

N T1 [s] T2 [s] Z1 (TREF1=22198s) [%] Z2 (TREF2=156.35s) [%]
1 20820 335.83 6.21 -114.85
2 10380 193.66 53.24 -24.23
3 7980 143.96 64.05 8.24
4 5760 119.06 74.05 23.80
5 4800 106.56 78.38 31.71
6 4740 99.76 78.65 35.97
7 4620 89.40 79.19 42.76

4 Conclusion
The genetic algorithms are typical examples of the systems suitable for parallel computing.

Parallel computing can accelerate the optimization process. Two environments for parallel computing
were presented. Java environment was significant faster but we must write our own functions for
genetic operations and distribution of the data. The parallel algorithm wasn't optimal because it was
slower with one and two computers then non-parallel algorithm. On the other side Matlab Parallel
Toolbox provided tools for parallel computing and we use Sekaj's genetic toolbox so writing
application in Matlab environment was faster. Matlab is complex environment so the computations
were slower, but betterment was significant only with two computers.

5 Acknowledgement
This work has been supported by Scientific Grant Agency VEGA 1/0544/09.

References
[1] K. Kopčok. Rozvrhovanie operácií v pružných výrobných systémoch s využitím genetických

algoritmov a heuristických prístupov. Dizertačná práca, FEI STU, Bratislava, 2005
[2] I. Sekaj. Evolučné výpočty a ich využitie v praxi. IRIS Bratislava, 2005, ISBN 80-89018-87-4
[3] B. Barney. Introduction to Parallel Computing.

[online] https://computing.llnl.gov/tutorials/parallel_comp/, 2009
[4] M. Hudáček. Výpočtovo náročné úlohy v Matlabe. Bakalárska práca, FEI STU, Bratislava, 2009
[5] P. Nagy. Distribuované výpočty pomocou Java RMI. Diplomová práca, FEI STU, Bratislava, 2009
[6] Sun Microsystems. The Java Tutorial. [online] http://java.sun.com/docs/books/tutorial/, 2009
[7] The MathWorks. Getting Started Guide. 2008
[8] The MathWorks. Parallel Computing Toolbox User’s Guide. 2008
[9] The MathWorks. MATLAB Distributed Computing Server, System Administrator’s Guide. 2008
[10] Posterus.sk. Matlab Tutorials. [online] http://www.posterus.sk/?cat=7, 2009

Ing. Michal Blaho
michal.blaho@stuba.sk

Ing. Martin Foltin, PhD.
martin.foltin@stuba.sk

Ing. Igor Kristijan Kopčok, PhD.
kopcok@eprojekt.sk

