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Abstract

This paper aims to provide an insight into the funtionality of the Inverted
Pendula Modeling and Control, a custom, thematicSimulink block library

which was designed to provide software support forthe analysis and
synthesis of inverted pendula systems. In addition,crucial modeling
procedures such as the derivation of motion equatis for inverted pendula
systems and symbolic linearization with respect ta given equilibrium point
are presented in form of symbolic algorithms, genalized for a system o

inverted pendula.

1 Introduction

Inverted pendula systems are a significant groumethanical systems used in control education
with a number of practical applications, such asghlisted in [1][2]:

e simulation of the unstable system of a human optiokupper limb if the centre of pressure is
placed below its centre of gravity

* modeling a human or a robot standing upright
< simulation of a space shuttle or a rocket takirfg of
» missile guidance if thrust is actuated at the bottd a tall vehicle

Within the MATLAB/Simulink environment, block libraries (blocksets) represtm modern
object-oriented, event-flow-driven, user-friendlyoplem-solving approach. Th8imulink Library
Browserallows a number of built-in (Toolbox) libraries be accessed in order to solve and simulate
various scientific and technical issues by meanbla¢k interconnecting. Furthermore, to provide a
wider variety of problems with such user flexilylitcustom masked blocks may be created and
grouped into user-designed libraries.

In order to cope with the modeling- and controktetl issues concerning the systems ioiverted
pendula on a cart, a block library entitleverted Pendula Modeling and Contr@PMacC for short)
was designed that can be fully integrated intoSimaulink Library Browseland used identically to
any built-inSimulinkblockset. An important part of the library is themo Simulationsection, which
represents a collection of links to simulation snke whose purpose is to solve various analysis- and
synthesis-related problems.

The enclosed MATLAB functions-fileg make use of th&ymbolic Math Toolboto generalize
the process of modeling for a systemnoinverted pendula. Compared to the often usedgehot-
prone Newton force summation, the easily algoritable approach based on Lagrange mechanics
points out the analogy found while creating the heatatical models of these systems for a
changingn. This approach was thus employed to develop argeMATLAB algorithm that derives
the symbolic equations of motion for any givenFollowing the similar philosophy, the procedure
of linear approximation of a nonlinear system imgigen equilibrium point was also made into a
MATLAB algorithm.

2 The Structure of thelPMaC Block Library

The installation of the library itself into tH&@imulink Library Browserconsists of unzipping the
InvPend.zigpackage and calling the included installationpaiblocks.mRefreshing the tree view in
the left panel is then required to reach the sitnads inFig. 1, which shows the final stage of the
installation process — the whole sublibrary streetof thelPMacC is seen as an integral part of the
Browser. This implies that the library is used itilgadly to any ofSimulinkblock libraries.
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The sublibraries that tH®MaC block library is structured into are:

e Inverted Pendula Modelsublibrary — contains dynamic-masked simulationdet® of
inverted pendula systems, pre-prepared for usep@m-toop analysis as well as state-space
control

e Inverted Pendula Contrasublibrary — contains function blocks that enathle state-space
feedback control design

« Inverted Pendula Sinks and Sourseblibrary — contains useful custom-designed itooitput
blocks e.g. thdmpulse block, which represents the most typical inputnalgin case of
inverted pendula simulation, i.e. a signal consgdiin terms of time and amplitude; or the
Scope rad2deglock, which displays its input signal with an Engieaning in degrees rather
than in radians.

TheDemo Simulationsection has the form of a tree structure of liilkexample simulation schemes
that demonstrate the functionality of the simulatlocks. Each demo scheme can be accessed by
doubleclicking a block that briefly describes tlssue it solves. These range from analyses of the
uncontrolled systems’ dynamics to various verifmas$ of control algorithms.

3 Mathematical Modeling

3.1 Theoretical Background behind a General Procedure foFinding the Motion
Equations

Let us consider a system of homogenous, isotropic rods which are joint-boungether and
attached to an inherently stable moving base. Hemcebtain a nonlinear mechanical SIM@t®m of



n inverted pendula on a carThe system'’s only input is the force acting upba cart, then+1
outputs are the cart positi({mn] and pendula angl{asad]. If we represent the system’s outputs in
form of a vector of generalized coordinates

_ T
ot)=(6,) at) ... &) (2)
then the system can be mathematically describethdyEuler-Lagrange-Rayleigh equations, whose
condensed vector form is

d (aL(t)j _0L), 9D _ oy @
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dt
where L(t) (Lagrange functiop is defined as the difference between the systekiistic and

potential energy,D(t) (Rayleigh, dissipation functigrexpresses the viscous (friction) forces and

Q (t) is the vector ofgeneralized external forceacting upon the system. The use of Lagrange

mechanics therefore transforms the process of idgrihe motion equations of the inverted pendula
system into the determination of kinetic, potenéiatl dissipation energies related to the cart énd a
pendula Using well-known formulas, general relagioimat describe the energetic balances of the cart
andi-th pendulum in an inverted pendula system werve@and can be found in [1].

These computations are at the base of the gene&k@LMB algorithm (nvpenderiv.m that uses
the Symbolic Math Toolboto return the mathematical model (iredifferential equations of motion)
of the system; the number of penduliié specified as the function parameter. The congweindow
output of thei nvpenderi v( 1) function call is listed below. In addition to thgemtual symbolic
motion equations in the “pretty” form, all physilgasignificant steps of the derivation process ban
tracked. The equations are generated in the sieglnd rearranged form, which is equivalent to the
most likely form obtained by manual derivation.

eq=i nvpenderiv(1)

Cart Coordinate:

x0 =

fio

Pendul um 1 Coor di nat es:

x1l =

fi0+1/2*1 1*sin(fil)

yl =

1/ 2*1 1*cos(fi 1)

Cart Velocity:

v0 =

dfi o

Pendul um 1 Vel ocity:

vl =

1/ 2% (4*(dfi 0+1/ 2*] 1*dfi 1*cos(fi 1)) ~2+] 172*dfi 172*sin(fi 1)~2)~(1/2)
Cart Potential Energy:

EpO0 =

0

Cart Kinetic Energy

EkO =

1/ 2*nD*df i 072

Pendul um 1 Potential Energy:
Epl =

1/ 2*ml*g*| 1*cos(fi 1)
Pendul um 1 Kinetic Energy:
Ek1 =

1/ 2*mil* ((df i O+1/ 2*] 1*dfi 1*cos(fi 1)) ~2+1/4*] 172*dfi 172*sin(fi 1)~2)+1/2*JT1*dfi 172
Di ssi pative Energy: 0

EdO =

1/ 2*del t a0*df i 0”2

Di ssi pative Energy:1




Edl =
1/ 2*del tal*dfi 1"2
Lagrange Functi on:
2
1/2 ml dfiO 11 dfil cos(fil) - 2/2 ml g |1 cos(fil) + 1/2 nD dfiO
2 2 2 2
+1/2 m dfio + 1/2 JT1 dfil + 1/8 ml |11 dfil
Di ssi pative Function:
2 2
1/2 delta0 dfi0 + 1/2 deltal dfil
EQUATI ONS OF MOTI ON:
/2 \ /2 \
| d I | d I
(mD + nlL) |--- fiO(t)|] + /2 mL 11 |--- fil(t)]|] cos(fil(t))
| 2 I | 2 I
\ dt / \ dt /
/d \2 /d \
-2 m Il |-- fil(t)|] sin(fil(t)) + delta0 |-- fiO(t)]
\ dt / \ dt /
/2 \ /2 \
2 |d I |d I
(JTL + /4 nL 11 ) |--- fil(t)] + /2 mL |--- fiO(t)] 11 cos(fil(t))
[ 2 I | 2 I
\ dt / \ dt /
/d \
- /2 g ll1sin(fil(t)) + deltal |-- fil(t)]
\ dt /
eq =
[ (nO+m) *d2f i 0+1/ 2* miL*| 1*d2fi 1*cos(fi 1)-1/2*ml*| 1*dfi 172*si n(fi 1) +del t a0*dfi O,
(JT1+1/ 4*il*| 172) *d2f i 1+1/ 2*nl*d2fi O*| 1*cos(fi 1) -1/ 2*nl*g*| 1*si n(fi 1) +del tal*dfi 1]

To verify the credibility of the algorithm, the awmatically received nonlinear differential
equations were, in both cases, compared to eqsatdienved manually (in [3],[4] fon=1, in [5],[6]
for n=2), obtaining identical results.

3.2 Simulation Models of Single and Double Inverted Pestulum

The sublibrary of théPMaC contains simulation models of the single=1) and doublen=2)
inverted pendulum in form of atomic library blocl&ngle Inverted Pendulum on a CaridDouble
Inverted Pendulum on a CaifSIPoaC and DIPoaC for short); both with their own icon and
parametric mask. The designed blocks can be usashipensate for an unavailable real model.

fib cart position

fi0 cart position
fi1 lower pole angle

fi1 pole angle fiz upper pole angle

F external force on the cart F e e D e

dfibidt cart velocity
dfilidt cart velocity

dfil/dt lower pole angular velocity

dfi1dt pole angular velocity

dfiz/dt upper pole velocity

Single Inverted Pendulum on a Cart

Double Inverted Pendulum on a Cart

Fig. 2 Simulink blocks of inverted pendula models included in théPMacC library

The block mask of each implemented syst&uit(— Mask Subsystgérencompasses the features
such as changing the system’s parameters, spegifign initial conditions (thus enabling the initial



deflection analysis), enabling or disabling theuinforce and adjusting the number of outputs, which
is equivalent to equipping a real model with sessBetting a number and type of the block’s inputs
and outputs is actually done by scripts that asggaed to the specified parameters within the mask.
The purpose of the scripts is to add fimeut/Output Portblock into the scheme whenever the input or
one of the outputs is marked as required. Othenth®ey are replaced bB@round/Terminatomblocks,
which basically disable the input/output on a block

The inner structure of both blocks is composed adidally designed subsystem blocks
interconnected with one another with respect ta thetual physical relations. Since each subsystem
block corresponds to a nonlinear equation thatag pf the system’s mathematical model, the
mathematical model of the system represents a sageprerequisite for simulation. It can be
concluded from above that the mathematical modal ©fstem oh inverted pendula consists 0f1
second-order differential equations that desctileectrt and each pendulum.

e e

Fig. 3 Single and double inverted pendulum on a car scheme and basic nomenclature

By settingn =1, we obtain thaingle inverted pendulum system (Fig. 3, left), which encompasses
the cart subsystem:

(m, +m, )6, (t) + Joéo(t)+%mlll(él(t)cosﬁl(t)— 62(t)sing, (t)) = F (1) 3)
and the pendulum subsystem:

“'l1¢§?1(t)+a'16?1(t)+;mlllé0 cosel(t)—;mlgllsinel(t):o (4)
where m, is the cart massin, is the pendulum mas$, is the pendulum length,is the friction
coefficient of the cart against the surfac@, is the damping constant of the pendulum and

J; =%mlll2 is the pendulum’s moment of inertia with respedhi® pivot.

Analogously, calling thenvpenderiv.mwith n =2 yields the mathematical model of tldeuble
inverted pendulum (Fig. 3, right), which is composed of

the cart subsystem:

-+ m )+ 40+ 3mi + i, 8 )eosa ) ¢ sine ()

®)
+—mi, B, ()coss, 1) - 2 t)sine, 1) = F ()
the lower pendulum subsystem:
(o, +m2 )+ +0)8,0) -8, 5, +m. e coss )+
(6)

i, (600t )-6.0) +6: (@ )-0, ) Sm +m, o sing )0

and the upper pendulum subsystem:



1

35,0+ 5,60 8,0))+ Ema b 0)cose, )+

+ % m2|1|2(é1(t)cos(01(t)_ Hz(t))_ élz(t)sin(ﬁl(t)— Hz(t)))_ % m,gl, sin 6, (t) =0

where m, is the cart massm,,m, are the pendula massdés, |, are the pendula lengtf,is the

friction coefficient

of

the cart, 9,,9,

are the damping

constants of

(7)

the pendula

andJ, =%mll 2,3, =%sz22 are the moment of inertia of the pendula with eespo the pivot points.

As an illustration, Fig. 4 and Fig. 5 depict theen structure of subsystem blodRart andPendulum
within the Single Inverted Pendulum on a Caitbck, both of which represent an exact transfoiona
of nonlinear equations int8imulinkblock diagrams.
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Fig. 5 ThePendulum subsystem within the function block Single Invertd Pendulum on a Cart

Thanks to thenvpenderiv.mthe derivation of the motion equations for anynber of pendula has
been made automatic and further expansion ofrtherted Pendula Modelsection (e.g. by creating a
triple or quadruple inverted pendulum model) isigfintforward.

4 State-Space Control Algorithms

It is well-known from experience that independemtiyhe initial state, an inverted pendula system
reaches the stable equilibrium point in which alingula are pointing downward. The control
objective will therefore be to stabilize the penadml (pendula) in the upright, unstable position.
Problems such as nonzero initial conditions, cormpgon of disturbance signal, tracking a reference
position of the cart or a combination of the thnesre dealt with.

4.1 Linear Approximation of Inverted Pendula Systems

Since the use of linear methods of synthesis irelthe linear approximation of the original
nonlinear dynamic system of inverted pendula, trenegal procedure of linearization was
algorithmized so as to yield the symbolic or numddrm of linear state-space matridesb ,C
related to a user-chosen equilibrium point of &ginonlinear, physically realizable system.

As the order of any system of inverted pendula on a cart2a+2, a state vector in the following
form was introduced to describe the system:

x(t)

o) o)) =

(at)

Xons2(t))'

X(t)

(8)



and the force acting upon the cart was logicalfjndel as the only input of the system(.t) = F(t).
Rewriting the Lagrange motion equations into thaimal ODE form

M (0(t))a(t) + N{o(e). o)) + Plo) =V (1) (9)

makes it possible to isolate the derivat'&ét) of state-space vector and subsequently to exphness
system in the nonlinear state-space form:

x(t) = f(x(t)u(t),t)
y(® = g(x(t). u(t). t
With use of the Taylor series, we can now credieear approximation to the whole state equation by
substituting f, (x(t),u(t)) by f," (x(t),u(t)):
. 222 of (x(t), ult of (x(t), u(t
o)~ txoe)s 35 B g RO -0y )
In the case of the upright positiorx,(t) =Xg = 0" and u(t) =Ug =0 holds and the state-space
description of the physically realizable linearizzgtem is given as
x(t) = Ax(t)+bult)
y(t) = cx(t)
The above-mentioned algorithm of transforming tleglange mathematical model into a state-
space matrix form is based on the just describedgss. For instance, the command window output

produced by thenatrices_single.nfunction which returns the linear state-space icegrof the single
inverted pendulum system in the upright positioasgollows:

(10)

Xg,Ug Xg,Ug

(12)

[A b, C d]=matrices_single
State space matrices
A =
[0, 0, 1, 0]
[0, 0, O, 1]
[ g m del t a0 del tal ]
[0, -3 --------- T y B - ]
[ m + 4 nD m + 4 nD 1 (nl + 4 nD)]
[ g (md + ml) del ta0 (mD + ml) deltal ]
[0, 6 -------------- y B e y m12 - ]
[ 1 (m + 4 nD) 1 (m + 4 nD) 2 ]
[ m 11 (nml + 4 nD)]
b =
[ 0 ]
[ ]
[ 0 ]
[ ]
[ 4 ]
[ - ]
[ m + 4 nD ]
[ ]
[ 6 ]
[- ---mmmmemm - ]
[ 11 (m + 4 n0)]
C =
1 0 0 0
0 1 0 0
d =
0
0




As in the case of mathematical model derivatiom, ttanually computed results (e.g. from [4])
confirm that the function output is accurate.

4.2 Inverted Pendula Control

At the moment, thénverted Pendula Contrdublibrary of the IPMaC provides software support
for continuous feedback methods of controller destmce more in form of dynamic-masked custom
blocks. Most importantly, it is thet&e Space Controller blog€SQG, which evaluates the relation

u(t) = u, (t)+ u, () + d, (t) = —kx(t) + k,wit) + 0, t) (13)
whereu (t), u,(t) andd,(t) stand for the feedback, setpoint and unmeasustdrdance components

respectively;k is the feedback gain which brings the system’sestactor to the origin of the state
space ([1][6][7]), andk, represents the setpoint gain which needs to bkedppa nonzero required
value is specified ([7]). The block’'s dynamic mg$kg. 6) allows the user to pick the method to
determine the feedback gakn: the pole-placement algorithm or the linear quadragulation LQR)
optimal control method are available, both of wharle supported bZontrol Toolboxin form of
built-in functions acker/placelqr). The corresponding computations are programmext¢ar during
the initialization of the block, which eliminatdset need for an additional m-file. The nonzero setpo
input W(t) and disturbance inpudu(t) may optionally be enabled or disabled so as tosadhe
block’s appearance to match the control objective.

Ej Function Block Parameters: State Space Contraller &J

W Function Block Parameters: State Space Controller lihj Stk Space Conrcler for Bynermic Sygterns mask)
Computes feedback and feedforward gain to generate system control input.

State Space Controller for Dynamic Systems {mask)

Computes feedback and feedforward gain to generate system control input. S

T Method used; (1633
Enter O
0

Method used: s ER=ERT

Choose poles:

Enter R:
0

0
[¥] Setpoint input other than zera

= [V Setpointinput other than zero
|| Disturbance input

V] bisturbance input

I 0K “ Cancel ” Help Apply I

0K “ Cancel ” Help H Apply |

Fig. 6 The dynamically changing State Space Contrer dialog box according to the chosen method

Thestate estimator bloc{SE represents a model of the estimated system ifothe
x(t) = A%(t)+bu(t) + L(y(t)- cx(t)) (14)
where L is the estimator gain matrix arﬁ(t) is the estimated state vector provided bySkeThe
estimation process is based on the gradual mintioisaf the estimation erroi(t) = x(t)— )?(t) and

on the requirement that the time behaviour of MGr@?(t) = (A - LC))?(t) should stay independent
of system parameters.

5 Demo Simulations — Overview

TheInverted Pendula Demo Simulatiosaction of thePMaC is actually a special type of library
block. If dragged into a simulation scheme and dexlicked, it displays a structured set of links to
simulation schemes (Fig. 7) which demonstrate tnectfonality of the blocks described in the
previous sections. Making a classic masked blodactas a link to andl (or any other) file involves
creating arOpenFcncallback function within th&lock Properties



Single Inverted Pendulum Double Inverted Pendulum Single Inverted Pendulum  Double Inverted Pendulum

Response Fesponse Response - Linear Model Response - Linear Model
Single Inverted Pendulum Single Inverted Pendulum Single Inverted Pendulum
State-Space Control State Space Control 11 State-Space Control with Estimator

Fig. 7 Structure of the Demo Simulations section

5.1 Open-loop Dynamic Analysis

The principal advantage of creating simulation nieaé inverted pendula on a cart in form of an
atomic icon is that detailed observation of thginamics can be done with no other modeling than
input/output block affiliation, for the model is mplete and functional itself. In such a way, the
analyses of the open-loop dynamical behavior dfi to¢ single and double inverted pendulum system
were included in thdPMaC in form of demo schemesSifigle and Double Inverted Pendulum
Responsg which were composed nearly exclusively of lBMaC blocks. In both cases, the analysis
of open-loop dynamic behavior was performed asparse to thémpulseblock; to view the signals
generated during simulatioBcopeandScope rad2deflocks were used.

The default numeric values of system parametersspeeified below. The dynamics of single
inverted pendulum system was analyzed for two ggafparameters at once:

group b m, = 03kg, m =0.27%g, |, = 05m, J, = 0.3kgs™, J, = 0.0114&gnTs™

group I m, = 0.1kg, m =1kg, |, = 08m, J, = 0.3kgs™*, J, = 0.1kgnTs™

and the default numeric values in the double ieepgendulum demo simulation are:

m, = 0.3kg, m = 0.27%g, m, = 0.27%g, |, = 05m, |, = 05m, J, = 0.3kgs™, J, = 0.1kgnTs™,
J, = 0.1kgnts™.
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Fig. 8 Single I nverted Pendulum on a Cart - cart position and pendulum angle

Cart Position [m]
b s
Pole Angle [deg]

Fig. 9 Double Inverted Pendulum on a Cart — cart position, upper and lower pendula angles



It can be seen from the simulation results (FigFig, 9) that the generally known empirical
observations of pendula behaviour are confirmedhEpendulum of the system passes through
oscillatory transient state until the system readhe stable equilibrium point in which all pendata
pointing downward. The backward impact of the pémapendula on the cart, which increases with
the weight of the load, is also visible. We carréf@re conclude that both models display acceptable
overall performance.

5.2 Verification of state-space control algorithms

The example schemes below were picked fronDiaeo Simulationsection to illustrate the way
of interconnecting the blocks so as to control shegle inverted pendulum system. A simulation
scheme of a linearized and a nonlinear model igsshwith both theState Space ControllendState
Estimatorblocks as part of each scheme. The adjustmeheaiumber of block inputs with respect to
the tackled problem is also demonstrated.

State Estimator
pl ]
n| X' = AXx+Bu » Scope
y = Cx+Du
Impulse State-Space » L1
Step State Space Controller

Scope

rad 2deg

State Estimator 1

0 cart position

F extemal force on the cart

Signal Builder 1 State Space Controller 1

Scope
rad2deg 1

i1 pole angle »

Single Inverted Pendulum on a Cart

Fig. 10 Examples of control simulation schemes

Fig. 11 and Fig. 12 document the time behavioibfuh the cart position and the pendulum angle
of the nonlinear single inverted pendulum systentase the control objective is to maintain the
desired cart position while keeping the pendulumigiy; no disturbance input is considered here. In
order to use the linear methods of synthesis, itteatization of the nonlinear inverted pendulum
system was required; this time tmatrices_single.nwas called with parameters in BtFcn script.
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Fig. 11 Single Inverted Pendulum on a Cart — simul#on results for pole-placement control without
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Fig. 12 Single Inverted Pendulum on a Cart — simul#on results for LQR control with
pole-placement-designed estimator (cart position &cking, pendulum angle stabilization)

The simulation results reveal that both controlcko do reasonably well. The ability of the
designed blocks§SCand SE) to control the system with respect to the alluisments presented
above has been demonstrated for both methods dbdek gain design, although LQR control
produces slightly better results despite the nesdah estimator. Overally, the simulation results
justify the use of linear control methods to cohtronlinear systems.

6 Conclusion

The purpose of this paper was to propose an ofigmaception of solving the task of modeling
and control of inverted pendula systems. It focusedthe description of thénverted Pendula
Modeling and Contrgla custom-designed, structur&imulink block library, the core of which is
represented by simulation models of a single andblgoinverted pendulum on a cart. The fact that the
models have the form of dynamic-masked atomic tibrblocks (icons) allows for detailed
observation of the systems’ dynamics with no othedeling than input/output block affiliation. A set
of suitable state-space control algorithms thdiikta the pendulum in the inverted (upright) piosit
was designed and supported by a set of librarykbloExamples of open-loop dynamical analysis as
well state-space controller design and verificatan be run from thBemo Simulationsection.

Practical importance of symbolic mathematical safewwas pointed out aSymbolic Math
Toolbox was used in the process of development of a gepevaedure that returns the motion
equations for a system of inverted pendula syst&8ush automatic approach yields a particularly
precise approximation of the real system’s dynaraiu eliminates any factual or numeric errors that
should arise during mathematical modeling. The gsecof symbolic linear transformation of a
specified nonlinear system in a user-chosen egquitibpoint was equally algorithmized.

First published in June 2009 as an open system,|RPhaC is going through constant
improvement process. Additions to sublibrarieswa$l as entire sections (e.g. a section on rotary
pendula systems, where the base is moving in aeplather than a single coordinate) are being
designed. Above all, the control section is beixgamded so as to include a wider variety of
controller blocks and control schemes (e.g. casstidetures, feed-forward control, model predictive
control, root-locus and frequency techniques) iditiah to the already presented state-space fe&dbac
control algorithms. To enable further verificatiohthe controllability properties of inverted petalu
systems, the double inverted pendulum system @ @lsnned to be included as the control plant.
IPMaC 2.0is scheduled for 2010.

In summary, we believe that the idea of creatingeanaticSimulinklibrary, which would group
accurate (based on extensive mathematical analgsisiilation models of mechanical systems
together with useful input/output blocks; suitalslentroller blocks and demonstration simulations
could find its use for a number of types of dynaahisystems. Libraries of hydraulic, pneumatic or
electrical systems could follow the steps of tR&¢aC, which we consider to be a contribution to
modeling and control education at technical unitiess
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