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Abstract 
This paper aims to provide an insight into the functionality of the Inverted 
Pendula Modeling and Control, a custom, thematic Simulink block library 
which was designed to provide software support for the analysis and 
synthesis of inverted pendula systems. In addition, crucial modeling 
procedures such as the derivation of motion equations for inverted pendula 
systems and symbolic linearization with respect to a given equilibrium point 
are presented in form of symbolic algorithms, generalized for a system of n 
inverted pendula. 

1 Introduction 
Inverted pendula systems are a significant group of mechanical systems used in control education 

with a number of practical applications, such as those listed in [1][2]: 

• simulation of the unstable system of a human or robotic upper limb if the centre of pressure is 
placed below its centre of gravity 

• modeling a human or a robot standing upright 

• simulation of a space shuttle or a rocket taking off  

• missile guidance if thrust is actuated at the bottom of a tall vehicle 

Within the MATLAB/Simulink environment, block libraries (blocksets) represent the modern 
object-oriented, event-flow-driven, user-friendly problem-solving approach. The Simulink Library 
Browser allows a number of built-in (Toolbox) libraries to be accessed in order to solve and simulate 
various scientific and technical issues by means of block interconnecting. Furthermore, to provide a 
wider variety of problems with such user flexibility, custom masked blocks may be created and 
grouped into user-designed libraries.  

In order to cope with the modeling- and control-related issues concerning the systems of n inverted 
pendula on a cart, a block library entitled Inverted Pendula Modeling and Control (IPMaC for short) 
was designed that can be fully integrated into the Simulink Library Browser and used identically to 
any built-in Simulink blockset. An important part of the library is the Demo Simulations section, which 
represents a collection of links to simulation schemes whose purpose is to solve various analysis- and 
synthesis-related problems. 

The enclosed MATLAB functions (m-files) make use of the Symbolic Math Toolbox to generalize 
the process of modeling for a system of n inverted pendula. Compared to the often used, but error-
prone Newton force summation, the easily algorithmizable approach based on Lagrange mechanics 
points out the analogy found while creating the mathematical models of these systems for a 
changingn . This approach was thus employed to develop a general MATLAB algorithm that derives 
the symbolic equations of motion for any givenn . Following the similar philosophy, the procedure 
of linear approximation of a nonlinear system in a given equilibrium point was also made into a 
MATLAB algorithm.  

2 The Structure of the IPMaC Block Library 
The installation of the library itself into the Simulink Library Browser consists of unzipping the 

InvPend.zip package and calling the included installation script slblocks.m. Refreshing the tree view in 
the left panel is then required to reach the situation as in Fig. 1, which shows the final stage of the 
installation process – the whole sublibrary structure of the IPMaC is seen as an integral part of the 
Browser. This implies that the library is used identically to any of Simulink block libraries. 



 

Fig. 1 The IPMaC, installed and active in Simulink Library Browser 

The sublibraries that the IPMaC block library is structured into are: 

• Inverted Pendula Models sublibrary – contains dynamic-masked simulation models of 
inverted pendula systems, pre-prepared for use in open-loop analysis as well as state-space 
control  

• Inverted Pendula Control sublibrary – contains function blocks that enable the state-space 
feedback control design 

• Inverted Pendula Sinks and Sources sublibrary – contains useful custom-designed input/output 
blocks e.g. the Impulse block, which represents the most typical input signal in case of 
inverted pendula simulation, i.e. a signal constrained in terms of time and amplitude; or the 
Scope rad2deg block, which displays its input signal with an angle meaning in degrees rather 
than in radians. 

The Demo Simulations section has the form of a tree structure of links to example simulation schemes 
that demonstrate the functionality of the simulation blocks. Each demo scheme can be accessed by 
doubleclicking a block that briefly describes the issue it solves. These range from analyses of the 
uncontrolled systems’ dynamics to various verifications of control algorithms. 

3 Mathematical Modeling 

3.1 Theoretical Background behind a General Procedure of Finding the Motion 
Equations 

Let us consider a system of n  homogenous, isotropic rods which are joint-bound together and 
attached to an inherently stable moving base. Hence we obtain a nonlinear mechanical SIMO system of 



n inverted pendula on a cart. The system’s only input is the force acting upon the cart, the 1+n  
outputs are the cart position [ ]m  and pendula angles[ ]rad . If we represent the system’s outputs in 
form of a vector of generalized coordinates 

( ) ( ) ( ) ( )( )T
n tttt θθθ K10=θ    (1) 

then the system can be mathematically described by the Euler-Lagrange-Rayleigh equations, whose 
condensed vector form is 

( )
( )

( )
( )

( )
( ) ( )t
t

tD

t

tL

t

tL

dt

d *Q
θθθ

=
∂
∂+

∂
∂−









∂
∂

&&

   (2) 

where ( )tL  (Lagrange function) is defined as the difference between the system’s kinetic and 

potential energy, ( )tD  (Rayleigh, dissipation function) expresses the viscous (friction) forces and 

( )t*Q  is the vector of generalized external forces acting upon the system. The use of Lagrange 
mechanics therefore transforms the process of deriving the motion equations of the inverted pendula 
system into the determination of kinetic, potential and dissipation energies related to the cart and all 
pendula Using well-known formulas, general relations that describe the energetic balances of the cart 
and i-th pendulum in an inverted pendula system were derived and can be found in [1]. 

These computations are at the base of the general MATLAB algorithm (invpenderiv.m) that uses 
the Symbolic Math Toolbox to return the mathematical model (i.e. n differential equations of motion) 
of the system; the number of pendula (n) is specified as the function parameter. The command window 
output of the invpenderiv(1)function call is listed below. In addition to the eventual symbolic 
motion equations in the “pretty” form, all physically significant steps of the derivation process can be 
tracked. The equations are generated in the simplified and rearranged form, which is equivalent to the 
most likely form obtained by manual derivation. 
 

eq=invpenderiv(1) 

Cart Coordinate: 

x0 = 

fi0 

Pendulum 1 Coordinates: 

x1 = 

fi0+1/2*l1*sin(fi1) 

y1 = 

1/2*l1*cos(fi1) 

Cart Velocity: 

v0 = 

dfi0 

Pendulum 1 Velocity: 

v1 = 

1/2*(4*(dfi0+1/2*l1*dfi1*cos(fi1))^2+l1^2*dfi1^2*sin(fi1)^2)^(1/2) 

Cart Potential Energy: 

Ep0 =  

0 

Cart Kinetic Energy 

Ek0 = 

1/2*m0*dfi0^2 

Pendulum 1 Potential Energy: 

Ep1 = 

1/2*m1*g*l1*cos(fi1) 

Pendulum 1 Kinetic Energy: 

Ek1 = 

1/2*m1*((dfi0+1/2*l1*dfi1*cos(fi1))^2+1/4*l1^2*dfi1^2*sin(fi1)^2)+1/2*JT1*dfi1^2 

Dissipative Energy:0 

Ed0 = 

1/2*delta0*dfi0^2 

Dissipative Energy:1 



Ed1 = 

1/2*delta1*dfi1^2 

Lagrange Function: 

                                                                   2 

  1/2 m1 dfi0 l1 dfi1 cos(fi1) - 1/2 m1 g l1 cos(fi1) + 1/2 m0 dfi0 

                      2               2            2     2 

         + 1/2 m1 dfi0  + 1/2 JT1 dfi1  + 1/8 m1 l1  dfi1 

Dissipative Function: 

                                     2                  2 

                      1/2 delta0 dfi0  + 1/2 delta1 dfi1 

EQUATIONS OF MOTION: 

            / 2        \             / 2        \ 

            |d         |             |d         | 

  (m0 + m1) |--- fi0(t)| + 1/2 m1 l1 |--- fi1(t)| cos(fi1(t)) 

            |  2       |             |  2       | 

            \dt        /             \dt        / 

                     /d        \2                      /d        \ 

         - 1/2 m1 l1 |-- fi1(t)|  sin(fi1(t)) + delta0 |-- fi0(t)| 

                     \dt       /                       \dt       / 

  

                     / 2        \          / 2        \ 

                  2  |d         |          |d         | 

  (JT1 + 1/4 m1 l1 ) |--- fi1(t)| + 1/2 m1 |--- fi0(t)| l1 cos(fi1(t)) 

                     |  2       |          |  2       | 

                     \dt        /          \dt        / 

                                            /d        \ 

         - 1/2 m1 g l1 sin(fi1(t)) + delta1 |-- fi1(t)| 

                                            \dt       / 

eq = 

[      (m0+m1)*d2fi0+1/2*m1*l1*d2fi1*cos(fi1)-1/2*m1*l1*dfi1^2*sin(fi1)+delta0*dfi0, 
(JT1+1/4*m1*l1^2)*d2fi1+1/2*m1*d2fi0*l1*cos(fi1)-1/2*m1*g*l1*sin(fi1)+delta1*dfi1] 

 

To verify the credibility of the algorithm, the automatically received nonlinear differential 
equations were, in both cases, compared to equations derived manually (in [3],[4] for n=1, in [5],[6] 
for n=2), obtaining identical results. 

3.2 Simulation Models of Single and Double Inverted Pendulum 
The sublibrary of the IPMaC contains simulation models of the single (n=1) and double (n=2) 

inverted pendulum in form of atomic library blocks: Single Inverted Pendulum on a Cart and Double 
Inverted Pendulum on a Cart (SIPoaC and DIPoaC for short); both with their own icon and 
parametric mask. The designed blocks can be used to compensate for an unavailable real model. 

 

Fig. 2 Simulink blocks of inverted pendula models included in the IPMaC library 

The block mask of each implemented system (Edit – Mask Subsystem) encompasses the features 
such as changing the system’s parameters, specifying the initial conditions (thus enabling the initial 



deflection analysis), enabling or disabling the input force and adjusting the number of outputs, which 
is equivalent to equipping a real model with sensors. Setting a number and type of the block’s inputs 
and outputs is actually done by scripts that are assigned to the specified parameters within the mask. 
The purpose of the scripts is to add the Input/Output Port block into the scheme whenever the input or 
one of the outputs is marked as required. Otherwise, they are replaced by Ground/Terminator blocks, 
which basically disable the input/output on a block. 

The inner structure of both blocks is composed of logically designed subsystem blocks 
interconnected with one another with respect to their mutual physical relations. Since each subsystem 
block corresponds to a nonlinear equation that is part of the system’s mathematical model, the 
mathematical model of the system represents a necessary prerequisite for simulation. It can be 
concluded from above that the mathematical model of a system of n inverted pendula consists of n+1 
second-order differential equations that describe the cart and each pendulum. 

 
Fig. 3 Single and double inverted pendulum on a cart – scheme and basic nomenclature 

By setting 1=n , we obtain the single inverted pendulum system (Fig. 3, left), which encompasses 

the cart subsystem: 

( ) ( ) ( ) ( ) ( ) ( ) ( )( ) ( )tFttttlmttmm =−+++ 1
2

1111100010 sincos
2

1 θθθθθδθ &&&&&&   (3) 

and the pendulum subsystem: 

( ) ( ) ( ) ( ) 0sin
2

1
cos

2

1
11110111111 =−++ tglmtlmttJ θθθθδθ &&&&&     (4) 

where 0m  is the cart mass, 1m  is the pendulum mass, 1l  is the pendulum length, 0δ is the friction 

coefficient of the cart against the surface, 1δ  is the damping constant of the pendulum and 

2
111 3

1
lmJ = is the pendulum’s moment of inertia with respect to the pivot. 

Analogously, calling the invpenderiv.m with 2=n  yields the mathematical model of the double 
inverted pendulum (Fig. 3, right), which is composed of 

the cart subsystem: 
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the lower pendulum subsystem: 
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and the upper pendulum subsystem: 
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where  0m  is the cart mass, 1m , 2m  are the pendula masses, 1l , 2l  are the pendula lengths,0δ is the 

friction coefficient of the cart, 1δ , 2δ  are the damping constants of the pendula 

and 2
111 3

1
lmJ = , 2

222 3

1
lmJ =  are the moment of inertia of the pendula with respect to the pivot points. 

As an illustration, Fig. 4 and Fig. 5 depict the inner structure of subsystem blocks Cart and Pendulum 
within the Single Inverted Pendulum on a Cart block, both of which represent an exact transformation 
of nonlinear equations into Simulink block diagrams. 
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Fig. 4 The Cart subsystem within the function block Single Inverted Pendulum on a Cart 
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Fig. 5 The Pendulum subsystem within the function block Single Inverted Pendulum on a Cart 

Thanks to the invpenderiv.m, the derivation of the motion equations for any number of pendula has 
been made automatic and further expansion of the Inverted Pendula Models section (e.g. by creating a 
triple or quadruple inverted pendulum model) is straightforward. 

4 State-Space Control Algorithms 
It is well-known from experience that independently of the initial state, an inverted pendula system 

reaches the stable equilibrium point in which all pendula are pointing downward. The control 
objective will therefore be to stabilize the pendulum (pendula) in the upright, unstable position. 
Problems such as nonzero initial conditions, compensation of disturbance signal, tracking a reference 
position of the cart or a combination of the three were dealt with. 

4.1 Linear Approximation of Inverted Pendula Systems 
Since the use of linear methods of synthesis involves the linear approximation of the original 

nonlinear dynamic system of inverted pendula, the general procedure of linearization was 
algorithmized so as to yield the symbolic or numeric form of linear state-space matricesA ,b ,C  
related to a user-chosen equilibrium point of a given nonlinear, physically realizable system. 

As the order of any system of n  inverted pendula on a cart is 22 +n , a state vector in the following 
form was introduced to describe the system: 

( ) ( ) ( )( ) ( ) ( ) ( )( )Tn

T
txtxtxttt 2221 ... +== θθx &   (8) 



and the force acting upon the cart was logically defined as the only input of the system: ( ) ( )tFtu = . 

Rewriting the Lagrange motion equations into the minimal ODE form  

( )( ) ( ) ( ) ( )( ) ( ) ( )( ) ( )ttttttt VθPθθθNθθM =++ &&&& ,   (9) 

makes it possible to isolate the derivative ( )tθ&&  of state-space vector and subsequently to express the 
system in the nonlinear state-space form:  
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With use of the Taylor series, we can now create a linear approximation to the whole state equation by 

substituting ( ) ( )( )tutf i ,x  by ( ) ( )( )tutf i ,* x : 
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In the case of the upright position, ( ) T
St 0xx == and ( ) 0== Sutu  holds and the state-space 

description of the physically realizable linearized system is given as 

( ) ( ) ( )
( ) ( )tty

tutt

Cx

bAxx

=
+=&

      (12) 

The above-mentioned algorithm of transforming the Lagrange mathematical model into a state-
space matrix form is based on the just described process. For instance, the command window output 
produced by the matrices_single.m function which returns the linear state-space matrices of the single 
inverted pendulum system in the upright position is as follows: 
 

[A,b,C,d]=matrices_single 

State space matrices 

A = 

        [0 , 0 , 1 , 0] 

        [0 , 0 , 0 , 1] 

        [         g m1          delta0           delta1    ] 

        [0 , -3 --------- , -4 --------- , 6 --------------] 

        [       m1 + 4 m0      m1 + 4 m0     l1 (m1 + 4 m0)] 

        [       g (m0 + m1)           delta0            (m0 + m1) delta1 ] 

        [0 , 6 -------------- , 6 -------------- , -12 ------------------] 

        [      l1 (m1 + 4 m0)     l1 (m1 + 4 m0)            2            ] 

        [                                              m1 l1  (m1 + 4 m0)] 

b = 

                              [       0        ] 

                              [                ] 

                              [       0        ] 

                              [                ] 

                              [       4        ] 

                              [   ---------    ] 

                              [   m1 + 4 m0    ] 

                              [                ] 

                              [        6       ] 

                              [- --------------] 

                              [  l1 (m1 + 4 m0)] 

  

C = 

     1     0     0     0 

     0     1     0     0 

d = 

     0 

     0 

 



As in the case of mathematical model derivation, the manually computed results (e.g. from [4]) 
confirm that the function output is accurate. 

4.2 Inverted Pendula Control  
At the moment, the Inverted Pendula Control sublibrary of the IPMaC provides software support 

for continuous feedback methods of controller design, once more in form of dynamic-masked custom 
blocks. Most importantly, it is the State Space Controller block (SSC), which evaluates the relation 

( ) ( ) ( ) ( ) ( ) ( ) ( )tdtwttdtututu uuvf ++−=++= vkkx   (13) 

where ( )tu f , ( )tuv  and ( )tdu  stand for the feedback, setpoint and unmeasured disturbance components 

respectively; k  is the feedback gain which brings the system’s state vector to the origin of the state 
space ([1][6][7]), and vk  represents the setpoint gain which needs to be applied if a nonzero required 

value is specified ([7]). The block’s dynamic mask (Fig. 6) allows the user to pick the method to 
determine the feedback gain k : the pole-placement algorithm or the linear quadratic regulation (LQR) 
optimal control method are available, both of which are supported by Control Toolbox in form of 
built-in functions (acker/place, lqr). The corresponding computations are programmed to occur during 
the initialization of the block, which eliminates the need for an additional m-file. The nonzero setpoint 
input ( )tw  and disturbance input ( )tdu  may optionally be enabled or disabled so as to adjust the 

block’s appearance to match the control objective. 

 

Fig. 6 The dynamically changing State Space Controller dialog box according to the chosen method 

The state estimator block (SE) represents a model of the estimated system in the form: 

( ) ( ) ( ) ( ) ( )( )tttutt xCyLbxAx ˆˆˆ −++=&     (14) 

where L  is the estimator gain matrix and ( )tx̂  is the estimated state vector provided by the SE. The 

estimation process is based on the gradual minimisation of the estimation error ( ) ( ) ( )ttt xxx ˆ~ −=  and 

on the requirement that the time behaviour of the error ( ) ( ) ( )tt xLCAx ~~ −=&  should stay independent 
of system parameters. 

5 Demo Simulations – Overview 
The Inverted Pendula Demo Simulations section of the IPMaC is actually a special type of library 

block. If dragged into a simulation scheme and doubleclicked, it displays a structured set of links to 
simulation schemes (Fig. 7) which demonstrate the functionality of the blocks described in the 
previous sections. Making a classic masked block to act as a link to a .mdl (or any other) file involves 
creating an OpenFcn callback function within the Block Properties. 



 

Fig. 7 Structure of the Demo Simulations section 

5.1 Open-loop Dynamic Analysis 
The principal advantage of creating simulation models of inverted pendula on a cart in form of an 

atomic icon is that detailed observation of their dynamics can be done with no other modeling than 
input/output block affiliation, for the model is complete and functional itself. In such a way, the 
analyses of the open-loop dynamical behavior of both the single and double inverted pendulum system 
were included in the IPMaC in form of demo schemes (Single and Double Inverted Pendulum 
Response), which were composed nearly exclusively of the IPMaC blocks. In both cases, the analysis 
of open-loop dynamic behavior was performed as a response to the Impulse block; to view the signals 
generated during simulation, Scope and Scope rad2deg blocks were used.  

The default numeric values of system parameters are specified below. The dynamics of single 
inverted pendulum system was analyzed for two groups of parameters at once: 

group I: kgm 3.00 = , kgm 275.01 = , ml 5.01 = , 1
0 3.0 −= kgsδ , 12

1 01148.0 −= skgmδ  

group II: kgm 1.00 = , kgm 11 = , ml 8.01 = , 1
0 3.0 −= kgsδ , 12

1 1.0 −= skgmδ  

and the default numeric values in the double inverted pendulum demo simulation are: 

kgm 3.00 = , kgm 275.01 = , kgm 275.02 = , ml 5.01 = , ml 5.02 = , 1
0 3.0 −= kgsδ , 12

1 1.0 −= skgmδ ,
12

2 1.0 −= skgmδ . 
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Fig. 8 Single Inverted Pendulum on a Cart - cart position and pendulum angle  
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Fig. 9 Double Inverted Pendulum on a Cart – cart position, upper and lower pendula angles 



It can be seen from the simulation results (Fig. 8, Fig. 9) that the generally known empirical 
observations of pendula behaviour are confirmed. Each pendulum of the system passes through 
oscillatory transient state until the system reaches the stable equilibrium point in which all pendula are 
pointing downward. The backward impact of the pendulum/pendula on the cart, which increases with 
the weight of the load, is also visible. We can therefore conclude that both models display acceptable 
overall performance. 

5.2 Verification of state-space control algorithms 
The example schemes below were picked from the Demo Simulations section to illustrate the way 

of interconnecting the blocks so as to control the single inverted pendulum system. A simulation 
scheme of a linearized and a nonlinear model is shown, with both the State Space Controller and State 
Estimator blocks as part of each scheme. The adjustment of the number of block inputs with respect to 
the tackled problem is also demonstrated.  
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Fig. 10 Examples of control simulation schemes 

Fig. 11 and Fig. 12 document the time behavior for both the cart position and the pendulum angle 
of the nonlinear single inverted pendulum system in case the control objective is to maintain the 
desired cart position while keeping the pendulum upright; no disturbance input is considered here. In 
order to use the linear methods of synthesis, the linearization of the nonlinear inverted pendulum 
system was required; this time the matrices_single.m was called with parameters in an InitFcn script. 
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Fig. 11 Single Inverted Pendulum on a Cart – simulation results for pole-placement control without 

estimator (cart position, pendulum angle) 
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Fig. 12 Single Inverted Pendulum on a Cart – simulation results for LQR control with  

pole-placement-designed estimator (cart position tracking, pendulum angle stabilization) 

The simulation results reveal that both control blocks do reasonably well. The ability of the 
designed blocks (SSC and SE) to control the system with respect to the all requirements presented 
above has been demonstrated for both methods of feedback gain design, although LQR control 
produces slightly better results despite the need for an estimator. Overally, the simulation results 
justify the use of linear control methods to control nonlinear systems. 

6 Conclusion 
The purpose of this paper was to propose an original conception of solving the task of modeling 

and control of inverted pendula systems. It focused on the description of the Inverted Pendula 
Modeling and Control, a custom-designed, structured Simulink block library, the core of which is 
represented by simulation models of a single and double inverted pendulum on a cart. The fact that the 
models have the form of dynamic-masked atomic library blocks (icons) allows for detailed 
observation of the systems’ dynamics with no other modeling than input/output block affiliation. A set 
of suitable state-space control algorithms that stabilize the pendulum in the inverted (upright) position 
was designed and supported by a set of library blocks. Examples of open-loop dynamical analysis as 
well state-space controller design and verification can be run from the Demo Simulations section. 

Practical importance of symbolic mathematical software was pointed out as Symbolic Math 
Toolbox was used in the process of development of a general procedure that returns the motion 
equations for a system of inverted pendula systems. Such automatic approach yields a particularly 
precise approximation of the real system’s dynamics and eliminates any factual or numeric errors that 
should arise during mathematical modeling. The process of symbolic linear transformation of a 
specified nonlinear system in a user-chosen equilibrium point was equally algorithmized. 

First published in June 2009 as an open system, the IPMaC is going through constant 
improvement process. Additions to sublibraries, as well as entire sections (e.g. a section on rotary 
pendula systems, where the base is moving in a plane rather than a single coordinate) are being 
designed. Above all, the control section is being expanded so as to include a wider variety of 
controller blocks and control schemes (e.g. cascade structures, feed-forward control, model predictive 
control, root-locus and frequency techniques) in addition to the already presented state-space feedback 
control algorithms. To enable further verification of the controllability properties of inverted pendula 
systems, the double inverted pendulum system is also planned to be included as the control plant. 
IPMaC 2.0 is scheduled for 2010. 

In summary, we believe that the idea of creating a thematic Simulink library, which would group 
accurate (based on extensive mathematical analysis) simulation models of mechanical systems 
together with useful input/output blocks; suitable controller blocks and demonstration simulations 
could find its use for a number of types of dynamical systems. Libraries of hydraulic, pneumatic or 
electrical systems could follow the steps of the IPMaC, which we consider to be a contribution to 
modeling and control education at technical universities. 
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