
SCHOOL AS A (MULTIMEDIA SIMULATION) GAME:
THE USE OF OBJECT TOOLS FOR DESIGNING MULTIME-

DIA APPLICATIONS FOR BIOMEDICAL TEACHING
Jiří Kofránek, Marek Mateják, Pavol Privitzer

Laboratory of Biocybernetics, Institute of Pathological Physiology, First Faculty of Medicine,
Charles University of Prague

Abstract

Nowadays, Comenius’s old motto – “schola ludus” (“school as play”) has found a
modern use in interactive educational programs using simulation games. Educational
applications using simulation games, available through the web, represent a new edu-
cational aid, very effi cient from the didactic point of view in explaining complex patho-
physiological processes. However, the process of creating them is not very easy – it
requires multidisciplinary team cooperation and the use of suitable object-oriented de-
velopment tools.The development of multimedia simulation games is a combination of
research and development work. The research work consists in formalizing physiologi-
cal reality by designing mathematical models, while development work is the very cre-
ation of multimedia simulators, which make use of the mathematical models designed.
Creative interconnection of the various professions and various object-oriented tools
and applications is the key to success. A scenario of good quality, created by an experi-
enced pedagogue, still remains the foundation of the e-learning program. The creation
of animated images is the responsibility of artists who create interactive animation in
Adobe Flash or in Microsoft Expression Blend environment. The artists use the Anim-
tester software tool developed by us, to create and test animations to be subsequently
controlled by the simulation model. The core of the simulators is the simulation model,
created in the environments of special development tools designated to create simula-
tion models (we have used Simulink from Mathworks). Now, we use a very effi cient
object-oriented environment, which utilizes the Modelica simulation language. We are
working on the Modelica language compiler to compile into the .NET component form,
which, together with the differential equations solver implemented on the .NET plat-
form as well, shall serve as the “data layer” of the simulator with the implemented
model. The user interface is connected with the simulation model using the data bind-
ing concept, which provides the intelligent automatic propagation of values between
the layers, thus data transfer. We use hierarchical state automatons to design the inner
application logic (the automatons make it possible to remember the relevant model
context and the user interface context). We have also developed a visual environment
(Statecharts editor), which allows creating the graphic design of the automatons, gener-
ating a code, and debugging them. The resulting simulator is a web application for the
Silverlight platform, which makes it possible to distribute the simulator as a web appli-
cation running directly in the internet browser (even on computers with various oper-
ating systems – it is only necessary that the relevant plugin is installed in the browser).

1. Schola ludus in modern form
Educational multimedia programs with simulation components are not just a modern replace-

ment for traditional textbooks. They are an entirely new teaching aid that allows vivid examination of
the studied problem by means of educational simulation games.

The internet as a distribution medium can make these new teaching aids easily available world-
wide.

A combination of the internet, a multimedia environment serving as an audio and visual user
interface, with simulative models allows clarifi cation of the dynamic relations between studied terms to
students connected to the magical internet network with the help of an educational simulation game. The

integration of multimedia educational games into teaching brings about entirely new pedagogical oppor-
tunities, in particular when explaining complex interrelations and actively exercising practical skills and
checking theoretical knowledge. In a simulation game, it is possible to test the behaviour of a simulated
object without risk – e.g. try to land a virtual aircraft or, with medical simulators, treat a virtual patient
or test the behaviour of physiological subsystems.

An old Chinese proverb says: “That which I hear, I shall forget; that which I see, I shall remem-
ber; that which I do, I understand”. This old Chinese piece of wisdom is proved by modern teaching
methods, sometimes called “learn by doing”, where simulation games play a major role. In addition,
simulation games introduce an element of experience and a bit of playful enjoyment into teaching. This
is the modern fi eld of application of John Amos Comenius’s old credo “Schola Ludus” (school as play)
(Comenius, 1656] which was promoted by this European pedagogue as early as the 17th century (Fig. 1).

Teaching with the help of simulation games available on the internet is common in physics or
chemistry; the utilization of simulation games and simulators in biomedicine is rarer, which is prob-
ably due to the complexity of the necessary simulation models. Nonetheless, there are a number of
educational applications with simulation games for medicine available on the internet. Many educa-
tional simulators of individual physiological subsystems can be found on the Web. For instance, there
is ECGsim (http://www.ecgsim.org/download.html), a simulator that allows examining the generation
and propagation of the electric potential in the ventricles and studying the origination mechanism of
the ventricular QRS complex for various pathologies from heart blocks to ischaemias and infarctions
(Oostendorp, 2004). Pressure circulation curves in the ventricles with various heart pathologies (valve
defects, left or right heart failures) can be observed on a heart simulator from Columbia University
(http://www.columbia.edu/itc/hs/medical/heartsim) (Burkhoff and Dickstein, 2002, Kelsey et al., 2002);
simulators of anaesthesia machines from the University of Florida allow giving anaesthesia to a virtual
patient (http://vam.anest.ufl .edu/) and monitoring related physiological responses, etc. (however, the
more complex simulators require paid access).

Figure 1: The combination of the internet and interactive graphics with simulation models in educa-
tional programs allows students to get “hands-on” experience with the studied problem in virtual real-

ity. This is the modern fi eld of application for Comenius’s old credo – “School as play”.

2. Complex models for integrative physiology and education
Pathophysiology teaching and the study of the pathogenesis of various pathological states can

make good use of complex simulators including models of not only individual physiological subsystems
but also their interconnection into a more comprehensive whole. The creation of such models was pio-
neered by Prof. Guyton, who used a mathematical model to describe the physiological regulations of
the circulatory system and its broader physiological relations and links with the other subsystems in the
body – the kidneys, volumetric and electrolyte balance control, oxygen transfer, nerve and endocrine
control, etc. – in the Annual Review of Physiology in 1972 (Guyton et al., 1972).

Guyton’s model, which we described in detail in the previous chapter of this book, was the fi rst
extensive mathematical description of the physiological functions of interconnected body subsystems
and launched the fi eld of physiological research that is sometimes described as integrative physiology
today. The model was not of purely theoretical importance – Guyton soon realized the great signifi cance
of models used as specifi c teaching aids.

Guyton and his disciples continued developing the model. In 1982, Guyton’s colleague Thomas
Coleman created the “Human” model intended mainly for educational purposes. The model allowed
simulating a number of pathological states (cardiac and renal failure, haemorrhagic shock, etc.) and the
effect of certain therapeutic interventions (infusion therapy, the effect of some medicines, blood transfu-
sion, artifi cial pulmonary ventilation, dialysis, etc.) (Coleman and Randal, 1983). Meyers et al. (2008)
have recently made Coleman’s original model available on the Web by implementing it in Java.

In 2005, Coleman et al. published a large educational simulator, Quantitative Circulatory Physi-
ology (QCP) which they made freely accessible on the Web (http://physiology.umc.edu/themodeling-
workshop/) to support its use as a medical teaching aid (Abram et al., 2007), see Fig. 2.

Figure 2: The environment of the Quantitative Human Physiology educational simulator. The simulator
offers monitoring of hundreds of variables, but is diffi cult to control and requires study of the extensive
simulator structure as well as good knowledge of which processes need to be monitored during simula-

tions of certain pathological states.

This was further expanded into the Quantitative Human Physiology educational simulator in-
cluding more than 4,000 variables, which is probably the largest model of physiological regulations
available today (Coleman et al, 2008, Hester et al. 2008)

We have also been engaged in the development of complex educational models for medical train-
ing and previously created the “Golem” educational simulator, which was based on a complex model
of integrated physiological controls (Kofránek et al, 2001). Our “Golem” simulator focused primarily
on teaching complex disorders of the inner environment (Kofránek et al., 2005).

3. Simple is better
However, experience with the deployment of complex models in teaching has shown that large,

complicated models have a signifi cant disadvantage from the didactic point of view in that they are dif-
fi cult to control.

The large numbers of input variables and wide range of possibilities in monitoring output vari-
ables require that the user have a deeper understanding of the actual structure of the simulation model
and know which processes need to be monitored during simulations of certain pathological states. Oth-
erwise the complex, sophisticated model will seem just a “complicated and hard to understand technical
toy” to users (similarly to when you place them in front of a complex airliner simulator with no previous
theoretical training).

Therefore, educational models (and perhaps not just the complex ones with hundreds of variables)
are insuffi cient for use in teaching on their own. They have to be accompanied by an explanation of
how they should be used – preferably using interactive educational applications. Only a combination
of teaching and simulation play provides the opportunity to take full advantage of virtual reality when
explaining complex pathophysiological processes. To combine the advantages of interactive multimedia
and simulation models for medical training, we came up with the project of an internet, computer-based
Atlas of Physiology and Pathophysiology (Kofránek et al, 2007), designed as a multimedia teaching aid
that should use visual, internet-based simulation models to help explain the function of individual physi-
ological subsystems and the causes and symptoms of relevant disorders – see http://physiome.cz/atlas/.
The Atlas thus combines explication (using animation with sound) and interactive simulation play with
models of physiological subsystems. All is freely available on the internet (Fig. 3).

4. Educational application framework – the script
A good script is the key to success for any educational program. The fi rst person upon whom the

success of an application in the making depends is an experienced teacher, who has to be sure of what
they want to explain their students using the multimedia educational application and by which means,
and where and how a simulation model can be used to clarify the studied subject.

The basis of any script is usually instructional text – a textbook, a chapter in a textbook, etc.
However, when creating the script for a multimedia educational application, we have to think of how
the e-learning program will be displayed on the screen, what the order of the screens will be, how they
will be designed, where interactive elements will be placed, where sound can be turned on, what the
individual animations will look like, where a simulation model will be put and how it will be controlled,
where a test should be put, what it will look like, how it will be evaluated and what the reaction to the
results should be, etc.

We have found it useful to take an approach known from animated fi lm – to draw (preferably in
cooperation with an artist) a “storyboard” – a rough sequence of screens - and then write comments for
each screen (or a reference to the appropriate part of the text created in a standard text editor).

However, an interactive multimedia program is not a textbook that has been simply transformed
into computer form. Nor is it a linear sequence of texts, sounds and moving pictures like an animated
cartoon. An important feature of an educational program is its interactivity – and the related possibility
of branching and interconnecting its parts. Transforming a linear, text and picture script into a branched
script interconnected by hypertext links is not easy, though.

One of the problems that need to be solved is how the script should capture the actual structure of

the educational program, involving lectures, interaction with the user, program branching, etc. The easi-
est way is using standard fl owcharts or block diagrams in a text or image editor to describe the relevant
branches, alternative boxes, etc. together with the necessary references to text pages and appropriate
images stored in additional fi les.

When writing scripts, we found it useful to take advantage of modern text editors’ capability to
create the relevant hypertext links – the script itself thus features some of the future interactivity.

A modern interactive educational program is not a computerized instructional animated fi lm,
either – the most advanced feature of interactivity is the option to put in a simulator that allows clarifi ca-
tion of the studied problem in virtual reality by means of a simulation game.

Figure 3: The Atlas of Physiology and Pathophysiology (www.physiome.cz/atlas) combines audio inter-
active lectures with animations and simulation games. Atlas is designed in Czech and English version.

5. Two types of problems in the creation of educational simulators
Two types of problems must be solved when creating simulators and educational simulation

games (Fig. 4):

1. Creation of a simulation model – the actual theoretical research work, consisting in a for-
malized representation of reality described by a mathematical model. The result should be a
verifi ed simulation model that suffi ciently refl ects the behaviour of the modelled reality at a
specifi ed level of accuracy.

2. Creation of the actual multimedia simulator, or the creation of an educational program us-
ing simulation games – is the practical application of theoretical results, which builds on the
results of the research. The basis for a simulator is the created (and verifi ed) mathematical
models. This is demanding development work that requires combining the ideas and experi-
ence of the teachers who create the educational program script, the creativity of the artists
who create the interactive multimedia components and the efforts of the programmers who
“concoct” the resulting work in its fi nal form.

Each of these problems has its own specifi cs and therefore requires the use of entirely different
development tools.

While the creation of the actual simulator is mostly developer and programmer work, the creation
of a simulation model is not development but a (rather diffi cult) research problem associated with fi nd-
ing an adequate formalized description for the modelled reality. The formalized description is used to
create a simulation model that simulates the behaviour of the modelled reality (by solving the relevant
equations of the mathematical model) using a computer. The model’s behaviour is compared to the
behaviour of the real-world system. Differences in the behaviours necessitate corrections in the formal-
ized description (e.g. by specifying new values of some coeffi cients in the mathematical model or even
changing the equations in the model) until the model’s behaviour matches the behaviour of the modelled
reality within specifi ed limits of accuracy. This is called model verifi cation.

Formalizace
fyziologických vztah?

Vytv á?ení simula?ního
modelu

Ov??ování chování
simula?ního modelu

Implementace modelu do
simulátoru

Vytv á?ení uživatelského
rozhran í simulátoru

Verifikace simulátoru ve
výuce

Nové požadavky na
simulátor – nové

požadavky na simula?ní
modelu

Chování modelu je
jiné než chování

biologick ého
originálu

Dostate?n? dobrá shoda
chování modelu s

chováním biologick ého
originálu

Formalised description
of physiological function

Simulation model design

Verification of simulation
model behavior

Design of simulator
user interface

Model behavior
compared with

human body behavior
is unsatisfactory

different

Simulation model design Simulator design

Model behavior
compared with

human body behavior
is satisfactory similar

Implementation of model
into simulator

Verification of simulator
in medical education

New requirements for
simulation model

Figure 4: Two types of problems in the creation of educational simulators.

In the past, simulation models were created directly in the same development environment as
the actual simulator (e.g. in Fortran, C++ or Java). Today, the creators and testers of simulation models
make increasing use of specialized development tools – such as Mathworks’s Matlab/Simulink, and
others. Particularly promising are “acausal” simulation environments (using e.g. Modelica, a special
language), which were discussed in the previous chapter.

The development tools for the creation of simulation models are intended for specialists. They are
not appropriate for the average user who just wants to “play” with the simulation model. Although the
environment of these tools enables programming a rather friendly user interface to control the created
model, the interface may still be too complicated, especially for simulation model applications in medi-
cal training; moreover, it often requires purchasing additional (rather costly) licences.

A medical student or a doctor prefers a simulator user interface that resembles the illustrations and
diagrams found in books, such as an atlas of physiology or an atlas of pathophysiology.

It is, therefore, necessary to program the educational simulator, including its multimedia user
interface, separately. This makes the user control features of the simulator much more natural for the
target group.

The creation of educational simulators and educational programs that use simulation games is
primarily programmer/developer work that is based on the educational program script created by an
experienced teacher on the one hand and on the results of research, i.e. the created (and verifi ed) math-
ematical models on the other hand.

An irreplaceable component of each educational simulator is the program part that implements
the simulation model. If we know the structure of the simulation model (which we created in some of the
development tools for the creation of simulation models), we just have to transform the model structure
into the form of a computer program in our preferred programming language (such as Java, C++ or C#).

Then it is necessary to draw interactive multimedia components for the creation of the user inter-
face. After that, the components must be interconnected with the simulation model behind the simulator.
In modern educational applications, such multimedia components often consist in interactive animated
images. Consequently, programmers have to collaborate with artists who create the animated images to
build a professional educational application.

The actual simulator is usually created in a standard development environment for the creation
of software and web components (e.g. Visual Studio .NET, a Java development environment such as
NetBeans, and others). Interactive graphics may be designed and programmed using other specialized
environments (such as Adobe Flash and its ActionScript, and others). Educational simulators are also
developed using tools for the visualization of industrial applications, such as Control Web.

The creation of a simulation model and the creation of a simulator are closely interrelated (see
Fig. 4) – the creation of an educational simulator is conditional upon a suffi ciently verifi ed model, while
the use of the simulator in teaching brings about a new demand for the creation of new simulation mod-
els or the modifi cation of the existing ones.

If we use different development tools for the creation of simulation models and the development
of the actual simulator, we have to ensure suffi ciently fl exible transfer of the results from one develop-
ment environment to another.

For instance, if we modify a simulation model in a tool for the creation of simulation models
(such as Matlab/Simulink), it is advisable to make sure that the changes in the model can be refl ected
quickly and easily in updates applying the changes to the actual simulator (developed e.g. in Visual
Studio .NET).

It is useful to create custom software aids or use specialized integrated development tools to fa-
cilitate such transfer.

6. Simulator development in Control Web and LabView
To integrate hypertext, interactive animations and other multimedia components with simulation

models, we set high standards for a graphical user interface on the one hand but the GUI cannot be too

Input channels

Virtual
instruments

Connected technology

Controller
of

hardware
cardOutput channels

Figure 5: Control Web’s communication with the driver of a control/measuring card in the development
of industrial applications. The data logger or control centre of an industrial application created in Con-
trol Web communicates via input and output channels with the controller of a measuring/control card,

which communicates with the connected process equipment.

Source
code in

C language

Simulator
design in
Control Web
environment

Virtual
instruments

and
animation
driven by

model

VECml

DistNaFlow

30
SimTime

29
PNa

28
ZNae

27
CDFNa

26
CDNaReab

25
NaUrine

24
DistFNa

23
DistNaReab

22
DistNaFlow

21
PrxFNa

20
PdxNaReab

19
MDNaFlow

18
Aldo

17
LogA2

16
A2

15
PRA

14
AffMyo

13
MDSig

12
EffC

11
AFC

10
RPF

9
RBF

8
RAP

7
AP

6
NetP

5
AVeCCP

4
PTP

3
GP

2
FF

1
GFR

MDNaFlow

LogA2

MDNorm

MDSig

M A C U L A D E N S A

INPUTS :
MDNaFlow - Macula densa sodium flow [mmol/min]

logA2 - Logarithm of plasma angiotensin concentration [pG/ml]
MDNorm - Normal macula densa feedback signal [x Normal]

OUTPUT :
MDSig - Macula densa feedback signal [x Normal]

Macula densa feedback signal calculation based on macula densa sodium
 flow and angiotensin concentration

RAP

AffC

TubC

RBF

RPF

APr

GKf

GFR

FF

GP

PTP

AVeCCP

NetP

G L O M E R U L U S

INPUTS :
RAP - Renal artery pressure[torr]

Affc - Afferent artery conductance [mll/min/torr]
TubC - Proximal tubule conductaqnce [ml/min/torr]

RBF - Renal blood flow [ml/min]
RPF - Renal plasma flow

APr - Plasma protein concentration (in afferent artery) [g/ml]
GKf - Glomerular filtration coeffitient [ml/min/torr]

OUTPUTS :
GFR - Glomerular filtration rate [ml/min]
FF - Filtration fraction [relative number]

GP - Glomerulal pressure [torr]
PTP - Proximal tubule pressure [torr]

AVeCOP - Average colloid osmotic pressure [torr]
NETP - Net pressure gradient in glomerulus [torr]

Glomerulus

NaDiet

NaUrine

VECml

ZNAE

PNa

S I M P L E S O D I U M B A L A N C E

INPUTS :
NaDIet - Dietary sodium intake [mmol/min]
NaUrine - Sodium urine outflow [mmol/min]

VECml - Extracellular fluid volume [ml]

OUTPUT :
ZNAE - ECF sodium content [mmol]

PNa - Plasma sodium concentration [mmol/ml]

Extracellular sodium quantity is the integral over time dietary sodium intake
minus urinary sodium loss

60.32

0.1908

7.815

125

16

0.931

1.656

0.8

3.617

1.002
1

0.144

2160 0.125

0.1226

0.07

1.5e+004

0.93

1.778

0.5084

1.839

3.617

0.5

6.945

0

4e+004

6.25

1.291

19.56

1

0

0.9778 1.5e+004

0.7991

14.39

99.93

25.03

29.96

1.291

25

1.001

1.002

30

29.96

1186

664.4

32.22

20.29

0.144

ZNAE

LogA2

APNorm

AP

A R T E R I A L P R E S S U R E

INPUTS :
ZNAE - ECF sodium content [mmol]

logA2 - Logarithm of plasma angiotensin concentration [pG/ml]
APNorm - Normal value of arterial pressurel [torr]

OUTPUT :
AP Arterial pressure [torr]

Control of arterial pressure by angiotensin and extracellular sodium content

Clock

RAP AffMyo1

M Y O G E N I C R E S P O N S E

INPUT :
RAP - Renal artery pressure [torr]

OUTPUT :
AffC - Myogenic effect [x Normal]

Calculation of the myogenic response to changes in renal
perfusion pressure(afferent conductance responds to

changes in perfusion pressure, with pressure
 increases causing vasoconstriction)

AffC

EffC

RenVenC

AP

VP

Hct

Clamp

RAP

RBF

RPF

R E N A L P E R F U S I O N

INPUTS :
AffC - Afferent artery conductance [ml/min/torr]
EffC Efferent artery conductance [ml/min/torr]

RenVenC - Renal venous conductance [ml/min/torr]
AP - Arterial pressure [torr]

VP - Vena renalis pressure [torr]
Hct - Hematocrit [relative number]

Clamp - Renal artery pressure drop
caused by renal artery clamp [torr]

OUTPUTS :
RAP - Renal artery pressure [torr]
RBF - Renal blood flow rate[ml/min]

RPF - Renal plasma flow rate[ml/min]

Calculation of renal artery pressure and renal blood flow rate

PNa

GFR

LogA2

PrxFNaNorm

MDNaFlow

PdxNaReab

PrxFNa

N A T R I U M - P R O X I M A L T U B U L E

INPUTS :
PNa - Plasma sodium concentration [mmol/ml]

GFR - GLomerulal filtration rate [ml/min]
LogA2 - Logarithm of plasma angiotensin concentration

[pg/ml]
PrxFNaNorm - Normal value of sodium proximal

 fractional reabsorbtion [relative number]

OUTPUTS :
MDNaFlow - Sodium outflow [mmol/min]

PdxNaReab - Proximal sodium reabsorbrtion [mmol/l]
PrxFNa - Proximal fractional sodium reabsorbtion

 [relative number]

Calculation of proximal tubule sodium reabsorbtion

MDSig

VECml

PRA

R E N I N

INPUTS :
MDSig - Macula densa feedback signal [x Normal]

VECml - Ectracellular fluid volume

OUTPUT :
PRA - Plasma renin activity [Units/ml]

Calculation of plasma renin activity

PRA

CEAct

A2Inf

A2

logA2

A N G I O T E N S I N

INPUTS :
PRA - Plasma renin activity [Units/ml]

CEAct - Converting enzyme activity [x Normal]
A2Inf Angiotensin 2 infusion rate [nG/min]

OUTPUTS :
A2 - Plasma angiotensin 2 concentration [pG/ml]

 LogA2 - logarithm of plasma angiotensin concentration [pG/ml])

Calculation of plasma angiotensin concentration and logarithm of plasma
angiotensin concentration (most of the action of angiotensin are logarithmic

in nature: concentration changes at higher concentrations produce less of an
effect than changes of the same size at lower concentrations)

logA2

AldoInf

VTWml

Aldo

A L D O S T E R O N E

INPUTS :
logA2 - Logarithm of plasma angiotensin concentration [pG/ml]

AldoInf - Aldosterone infusion rate [nG/min]
VTW - Total body water content [ml]

OUTPUT :
Aldo - Plasma aldosterone concentration [nG/dl]

Calculation of plasma aldosterone concentration

MDNaFlow

Aldo

DisFNaNorm

DisNaFlow

DisNaReab

DisFNa

N A T R I U M - D I S T A L T U B U L E

INPUTS :
MDNaFlow - Sodium inflow [mmol/min]
Aldo - Plasma aldosterone level [pg/ml]

DisFNaNorm - Normal value of sodium distal
 fractional reabsorbtion [relative number]

OUTPUTS :
DisNaFlow - Sodium outflow [mmol/min]

DisNaReab - Distal sodium reabsorbrtion [mmol/min]
DisFNa - Distal fractional sodium reabsorbtion

[relative number]

Calculation of distal tubule sodium reabsorbtion

DisNaFlow

CDFNaNorm

NaUrine

CDNaReab

CDFNa

N A T R I U M - C O L L E C T I N G D U C T

INPUTS :
DisNaFlow - Sodium inflow [mmol/min]

CDFNaNorm - Normal value of sodium distal
 fractional reabsorbtion [relative number]

OUTPUTS :
NaUrine - Sodium urine outflow [mmol/min]

CDNaReab - Collecting duct sodium reabsorbrtion
[mmol/min]

CDFNa - Collecting duct fractional sodium reabsorbtion
[relative number]

Calculation of collecing duct sodium reabsorbtion

logA2

MDSig

EffNorm

EffC

E F F E R E N T A R T E R Y

INPUTS :
logA2 - logarithm of angiotensin concentration

MDSig - Macula densa feedback signal [x Normal]
EffNorm - Normal conductance in afferent artery [ml/min/torr]

OUTPUT :
EffC - Vascular conductance [ml/min/torr]

Calculates conductance of efferent artery

AffMyo

MDSig

AffNorm

AffC

A F F E R E N T A R T E R Y

INPUTS :
AffMyo - Myogenic effect [x Nomal]

MDSig - Macula densa feedback signal [x Normal]
AffNorm - Normal conductance in afferent artery [ml/min/torr]

OUTPUT :
AffC - Vascular conductance [ml/min/torr]

Calculates conductance of afferent artery

20
VECml

19
NaDiet

18
VTW

17
AldoInf

16
A2Inf

15
CEAct

14
MDNorm

13
CDFNaNorm

12
DisFNaNorm

11
PrxFNaNorm

10
APNorm

9
EffNorm

8
AffNorm

7
Clamp

6
Htc

5
VP

4
RenVenC

3
GKf

2
Apr

1
TubC

EffC

AP

AP

Aldo

LogA2

LogA2

Automatic
generation
of source
code

Controller
of a virtual
hardware

card

Simulation
model

Model
implemented
in Simulink

Figure 6: Incorporation of a simulation model into a “virtual card” driver during the creation of a
simulator in Control Web. The simulator created in Control Web communicates via input and output
channels with the controller of a virtual measuring/control card (with no existing hardware). The simu-
lation model is “hidden” in the controller. Input variables are “sent” to the simulation model through
the Control Web application’s output channels. The model’s outputs are read in the same way as the
measured outputs of process equipment, by means of input channels. To avoid the necessity to manually
program a controller with a “hidden” simulation model, we have developed a special tool that auto-

matically generates C source code for the controller directly from a model implemented in Simulink.

resource-intensive because, on the other hand, we want to keep enough resources for the numerical
calculations needed to run the simulation model. Similar requirements can be found in industry – when
building control centres, we would like to display various measuring instruments fl exibly enough on the
computer screen but we would also like to preserve suffi cient numerical capacity for the actual measure-
ment and control in the industrial application.

Therefore, one of the development tools that can be used to create educational simulators is soft-
ware utilized in the creation of industrial applications (data loggers and control centres).

Development tools for the visualization of industrial applications usually offer a rich, easy to im-
plement user interface that communicates with a simulation model programmed inside the application.
Then users can manipulate the simulation model in an educational simulator as if they are controlling
complex process equipment from a control centre: They wish to read (and display in varied graphical or
numerical form) a great deal of diverse measured data (as in an industrial data logger) while they also
wish to have a simple way (pushing a button, turning a knob or pulling a rod) of controlling the simula-
tion model (as if controlling equipment from a control centre).

To this end, biological and medical educational simulators often utilize the LabView environment
(Davis, 2001, Davis and Gore 2001).

We used the Control Web development environment from Moravian Instruments to develop edu-
cational simulators. In it, we implemented, among other things, an educational simulator of physiologi-
cal functions: Golem (Kofránek et al, 2001).

The Control Web environment is intended primarily for the development of industrial, WIN32-
based visualization and control applications – data collection/storage/evaluation, creation of human-
machine interfaces, etc. (see http://www.mii.cz). The basic building elements of a user application de-
veloped in Control Web are virtual instruments (communicating with one another by means of variables
and messages). In industrial applications, the virtual instruments receive values measured in the outside
world through input channels and can send control signals to their environment through output channels.

The Control Web system provides powerful tools for the development of user interfaces. For
example, it is possible to easily drag a necessary instrument from the palette of virtual instruments with
the mouse, drop it on the appropriate panel and set the values of its relevant attributes and defi ne its local
variables or individual procedures (object methods) in an interactive dialogue box.

To be able to take advantage of Control Web’s development comfort, we had to use the following,
rather simple trick. In industrial applications, Control Web communicates with industrial process equip-
ment (through the appropriate software channels) via the driver of a measuring/control card (Fig. 5).

However, it is possible to write a special driver with a simulation model as an internal part. Such
a driver is able to communicate with Control Web objects (through software channels) but unlike the
drivers of real measuring and control cards, it communicates with the simulation model instead of the
hardware. If the driver is written well, Control Web is “tricked”: it believes that the input channels
(for display elements on the screen) are real-world, measured signals from the computer’s surrounding
equipment while in fact they are the output variables of a simulation model. And conversely, Control
Web is convinced that the output channels running from its control elements set some industrial active
elements via the appropriate driver but they change the inputs of the simulation model instead (Fig. 6).

Control Web will facilitate the creation of a user interface for an educational simulator. It is fast
enough and provides an effi cient solution for displaying graphics without making high demands on the
processor.

However, the actual mathematical model that constituted the core of our simulators was devel-
oped in Matlab/Simulink.

To facilitate the development of “virtual measuring/control card drivers” containing a simulation
model and to avoid writing a driver for each model in the C programming language “manually”, we
developed a special program that will allow us to automate the development of such drivers (Kofranek
et al., 2003, Stodulka et al, 2007). This allows us to generate C source code for a virtual driver directly
from a Simulink diagram. Thus we can modify our Control Web driver quickly and easily for any modi-

fi cations and new versions of our simulation model.

In addition to class instances from a wide range of ready-made virtual instruments, the Control
Web object-oriented development environment allows using containers as user environment elements
on the screen; such containers may contain an animation created in Adobe Flash and connected with the
appropriate input or output channels of Control Web via the ActiveX interface. This will allow creating
animated images controlled by the simulation model in the background (see Fig. 7 and Fig. 8).

3. The bronchial obstruction to one of the lung
compartments leads to disturbances of ventilation
to perfusion ratio with decreased oxzden satura-

tion in mixed arterial blood

4. The compensatory effect of bronchial obstruc-
tion diminishes perfusion in hypoventilated

compartment and increases oxygen saturation in
mixed arterial blood

2. The increase of right-to left pulmonary shunt
leads to decrease of oxygen saturation in arterial

blood

1. Normal physiological conditions

Figure 7: An example of the various visual interface states in a simulation game in a respiration disor-
der teaching program. The user interface, created in Control Web and using a Flash animation, sche-
matically shows the various degrees of ventilation and perfusion of two parts of the lungs. A student
“plays” with the moving picture and the model in the background calculates the relevant physiological
parameters, displayed as values on virtual measuring instruments (in Control Web). This also changes
the “depth of breathing” and “amount of perfusion” of the lungs on the schematic picture consisting
in Flash animation. First panel shows normal physiological conditions, second shows the increase of
right-to left pulmonary shunt, third introduces a bronchial obstruction to one of the lung compartments
with disturbances of ventilation to perfusion ratio and fourth the compensatory effect of perfusion op-
posing the bronchial obstruction. Student can watch the changes of physiological parameters in arte-
rial, mixed venous and end pulmonary capillary blood.(in meters). Varying of ventilation and perfusion

are depicted by changes of animated central panel.

7. The “muscles” of an educational simulation application – interactive
multimedia Flash components

Even though Control Web allows the easy insertion of any animated elements, created in Adobe
Flash, into the created user interface, we often use the ready-made virtual instruments when developing
simulators in this environment. The overall appearance of an educational simulator thus often cannot
conceal the original focus of the development tool in which it was created, more or less resembling an
industrial visualization application.

If we want to allow the educational simulator to have any graphical appearance we wish, we need
use a less limiting development tool to create the multimedia components for its user interface.

A very suitable development environment for the creation of interactive multimedia components
is Adobe Flash, which allows us to create animated interactive components whose behaviour can be pro-
grammed (and interconnected with a simulation model in our applications). Created Flash components
can be easily played back right on web pages (using a built-in interpreter, freely downloadable from the
internet), or they can be used as ActiveX components in the creation of educational applications in the
Visual Studio .NET environment.

Flash has undergone rather a long development. Originally, it was principally a Macromedia
program intended just for the creation of animated images. Over time, there were more opportunities to
control the created animations with scripts, whose syntax was gradually developed and extended. Since
version 7 (marketed as Macromedia Flash MX 2004), the Flash environment has included a truly object-
oriented control language (ActionScript), with syntax very similar to Java, which gives rather easy and
sophisticated control over the behaviour of visual interactive elements.

The big success of the Macromedia Flash development environment is based, among other things,
on the fact that its creators were rather successful in implementing an interface for artists (creating basic

Figure 8: An example of an educational simulator of the kidneys created in Control Web. Model outputs
are displayed on pointer instruments and at the same time affect the shape of the animated picture of the

renal glomerule (size, thickness of arrows, numerical values, etc.) created with Adobe Flash.

animation elements) and programmers that can use the above-mentioned object-oriented language to
make the components interactive.

The basic component of Flash animations is a movie. A movie can be divided into scenes that can
be played in sequence or programmatically (out of sequence). A scene consists in a sequence of indi-
vidual frames. Movies can be linked arbitrarily – each movie can be programmed to load another movie
and play it back. This is especially useful in internet applications, where the fi rst part of an animation,
when loaded and launched, can download the other parts from the server in the background.

The creation of computer animations is based on the traditional method of cartoon animation, with
the individual parts of each frame drawn on transparent cells laid over one another. Some cells need not
be redrawn for each additional frame, or they just need a slight shift (e.g. the background), while others
(e.g. a fi gure) are redrawn in each frame either completely or partially to produce animated movement.

In Flash (see Fig. 9), each scene consists in several layers that function similarly to cells in the
manual creation of an animated cartoon.

Each movie/scene frame has several layers in which individual image elements are stored. The
visual elements may be drawn separately in each layer – Flash includes a relatively powerful tool for the
creation of vector graphics (naturally, vector graphics may be imported from a number of other external
drawing programs). Another possibility is choosing a graphic from a library and creating an instance.
However, an instance may be something other than just a static image. An instance may be e.g. a Mov-
ieClip, which in fact is an instanced class of a previously created movie. For example, when creating the
picture of an aircraft, we can insert an instance of a movie clip with a rotating propeller from a library as
an element in one of its layers. A special type of movie clips is Buttons, for which it is possible to defi ne
not only the appearance (on mouse-over and on click) but also their behaviour to serve the launched
event. The actual MovieClip may have a rather complex hierarchical structure – the clip it consists in can
contain other movie clip instances. For example, a car MovieClip can contain the MovieClips of turn-

Library of
movie
clips

Tools for
drawing vector

graphics

Layers of
movie
frames

Drawn
movie in
the stage

Playhead
in timeline

Figure 9: Adobe Flash provides artists with tools for drawing vector graphics. However, it is also pos-
sible to insert a MovieClip instance from a library into the individual layers of movie frames (as in the
example shown). The behaviour of each visual (and non-visual) component can be programmed (in a

programming window).

ing wheels. Each MovieClip instance has
its own properties (coordinates of location
in the scene, size, colouring, transparency,
etc.), which can be changed dynamically
from the program. In addition, the Mov-
ieClip class has a number of methods that
we can use (e.g. a method for detecting col-
lisions with another MovieClip instance in
the scene, etc.).

When creating a MovieClip, we can
also program specifi c methods that we can
then call in all of its instances. This allows
programming rather complex behaviour for
the visual components. It is relatively easy
to create special MovieClips as real com-
ponents and then set up their properties in
a special component editor and call their
methods during runtime. This gave many
creators the opportunity to create (and then
distribute or sell) various visual (as well as
non-visual) components and contributed to
the popularity of Flash among visual artists.

The development environment al-
lows creating individual movies (both
graphically and programmatically), testing
them and translating them into an interme-
diate language (as .swf fi les) that can be
interpreted by a freely downloadable inter-
pretive program (Flash Player) and either
played back as an independently execut-
able animation or viewed directly in a web
browser. In addition, the created .swf fi le
can be interpreted by means of a special
ActiveX component that can be built into
another program – e.g. into an application
created in Control Web or Microsoft Visual
Studio. Importantly, the component can ex-
change messages with the application, al-
lowing us to easily control the behaviour
of an interactive animation by another ap-
plication. The application can also receive
messages from the interactive animation,
informing it of user interventions.

As a result of the great success of
Flash, Macromedia was bought by Adobe
and Flash became one of the integral parts
of Adobe’s portfolio of computer graphics
tools.

Today, Flash components can be used in RIAs (Rich Internet Applications) – a new generation
of multiplatform web applications with elaborate, comprehensive user interface design, created with
Adobe Flex, or as desktop applications created with Adobe Air.

The speed of the .swf interpreter (Flash Player) has grown and ActionScript can now be used to
create the actual simulation core of educational simulators. The advantage of pure Flash educational ap-

Figure 10: Adobe Flash can be used to implement simu-
lators that can run right in a web browser – examples of
fl ash simulators for a simple circulation model, acid-base
balance and an educational program explaining the me-
chanical properties of the skeletal and heart muscles by

means of simulation games.

Figure 11: A complex blood gas transport model – an example of a simulator implemented in Microsoft
.NET. The simulator installs on the client computer (by clicking the appropriate button on the web page).
However, it requires that the .NET platform be present; if not already installed on the client computer, it

was automatically downloaded from a Microsoft server..

plications (which may be complex RIAs composed in Adobe Flex) is the fact that they can be launched
directly from a web browser (having the appropriate plugin) and look the same on all platforms.

We have created some educational simulators and educational multimedia applications with sim-
ulation games in this environment (Fig. 10). Flash is also the current platform in which our Atlas of
Physiology and Pathophysiology is implemented.

However, the Flash Player environment is still an environment based on the interpretation of
Flash .swf fi les. There is a certain power barrier that we hit with numerically intensive calculations in
more complex simulators. The Adobe Flash environment itself is not suffi cient for the more complex
simulators (yet).

A very suitable platform for the development of simulators that we are using prevailingly now is
the Microsoft .NET platform and the Microsoft Visual Studio .NET programming environment, which
offers great options to programmers.

In this environment, we are not limited by “premade” user interface elements as in the Control
Web environment and can take advantage of the full potential of a modern software development tool;
on the other hand, we have to program many elements for our created application on our own. How-
ever, we can use graphical user interface components created in Adobe Flash and interconnect them (by
means of ActiveX) with the simulator core, which is the simulation model; the graphical components
can then behave as puppets controlled by the simulation model (Fig. 11).

8. The brain of an educational application – the simulation model
The implementation of simulation games in an educational program is not trivial. To create simu-

lation models, we use special development tools for the creation, debugging and verifi cation of simula-
tion models, which were mentioned in the previous chapter.

The creation of simulation models in biomedical sciences is research rather than development
work, often of a multidisciplinary nature – on the one hand, there is a system analyst – an expert in the
formalization and creation of simulation models (theoretical physiologist, creating a formalized descrip-
tion of a physiological system and testing its behaviour by means of a simulation model). On the other
hand, there is a traditional experimental physiologist or clinician, who perhaps cannot make head or tail
of a physiological system description using differential equations but who can easily see to which extent
the behaviour of a computer simulation model corresponds to the biological reality.

In our experience, the communication problem between these two groups of experts may be sig-
nifi cantly alleviated by a consistent use of “simulation chips” (Kofránek et al., 2002) and modern devel-
opment tools for the creation of simulation models. Verifi ed simulation models (whose behaviour corre-
sponds to the biological reality to a given degree of accuracy) can then be used in educational programs.

However, this requires that the model is fi rst transferred from the development environment in
which we created, debugged and verifi ed it into the environment in which the actual educational simu-
lator is created. With simple models, this can be done “manually” – as we often do with pure Flash
educational simulators.

Nevertheless, we preferred creating software tools that automate this work for us with more com-
plex models. As mentioned above, we created a generator for converting a simulation model from Mat-
lab/Simulink into a driver for a virtual measuring/control card that the Control Web runtime environment
communicates with; the generator creates the driver C source code directly from a Simulink model.

Likewise, to facilitate the creation of simulators in Visual Studio .NET (i.e. to avoid having to pro-
gram a debugged simulation model in Visual Studio .NET “manually”), we developed a special software
tool (Stodulka et al., 2007, Kofránek, 2009) that generates a simulation model as a component for .NET
from Simulink automatically (see Fig. 12).

9. Combining the model, simulator and animation development plat-
forms

When creating simulators, we had to work with three types of different software tools:

1. Software tools for the creation and debugging of mathematical models that will constitute
the basis for a simulator – Matlab/Simulink. This environment is useful and effi cient for the
development of simulation models, but running simulators in it is diffi cult.

2. A software tool for the development of the actual simulator – here we used the Microsoft
Visual Studio .NET environment. The simulators were developed in C#. Another environ-
ment we used for the creation of educational applications was Control Web from the Czech
company Moravian Instruments, especially because it offers excellent possibilities for the
quick creation of the user interface of a simulator – but such an interface is too “technical”.

3. Software tools for the creation of interactive multimedia graphics – the user interface for sim-
ulators. Here, we used Adobe Flash (formerly Macromedia Flash) for a long time. This tool
allows creating interactive animations that can be also programmed using a special program-
ming language, ActionScript. The animations can then be inserted into programs created in
the environment as well as into programs created in Control Web. Importantly, the animations
can (thanks to the above-mentioned ActionScript programming capability) communicate at
the software level with a simulation model programmed in C# in Microsoft Visual Studio
.NET. Likewise, the animations can be inserted into Control Web.

As we used different development tools for the creation of simulation models and for the devel-

Figure 12: The original solution for the creative interconnection of tools and applications for the cre-
ation of simulators and educational programs using simulation games. The basis of an e-learning pro-
gram is a quality script, created by an experienced teacher. The creation of animated pictures is up to
artists, who create interactive animations in Adobe Flash. The core of a simulator is a simulation model,
created in the environment of special development tools for the creation of simulation models. We used
Mathworks’ Matlab/Simulink for a long time. The development of a simulator is a diffi cult programming
task; to make it easier, we have developed special programs that facilitate the conversion of created

simulation models from Matlab/Simulink to Control Web and Microsoft .NET.

opment of the actual simulator, we had to ensure suffi ciently fl exible transfer of the results from one
development environment to another. Because we created mathematical models in Matlab/Simulink and
built the actual educational simulators in the Microsoft Visual Studio .NET environment (or in the Con-
trol Web environment), we had to develop software tools that would allow automating the conversion of
models from Matlab/Simulink to Microsoft Visual Studio .NET.

Those “interconnection” tools allowed us to develop and continually update a mathematical mod-
el in the best environment intended for the development of mathematical models, while developing the
actual simulator in Visual Studio .NET (or Control Web) without having to “manually” re-program the
mathematical model. They enabled easy multidisciplinary collaboration among project team members
– system analysts, creating the mathematical models, and programmers, implementing the simulator.

Nonetheless, this meant working in three software environments and each innovation of a single
environment often required updating the relevant interconnection tools.

From the user’s point of view – simple models implemented directly in ActionScript on the back-
ground of Flash animations could be worked with right in a browser with Flash Player installed. How-
ever, more complicated models, such as the complex model of blood gas transport (http://physiome.cz/
atlas/sim/BloodyMary_cs/) required, before the fi rst launch, that the model be installed on the client
computer (and that the .NET platform be present; if not already installed on the client computer, it was
automatically downloaded from a Microsoft server).

To install applications, the user has to have the appropriate administrator rights on his/her com-
puter and in addition, a model running as a stand-alone application connects only indirectly to the web
interface where the interactive multimedia lecture is running.

10. Simulators that can be run right in the browser – now an achievable
goal (thanks to Silverlight)

In terms of pedagogical effect, it would be useful to be able to run and control even complex
models right in a web browser. This has proven to be possible if we create the entire simulator so that it
can be run in Microsoft’s new environment – Silverlight. Silverlight is Microsoft’s response to Adobe’s
ubiquitous Flash Player.

Silverlight is a web platform based on the .NET technology, which fully derives from the operat-
ing system and hardware on which an application runs. It is intended for the creation of and interactive
work with dynamic online content. It combines text, vector and bitmap graphics, animations and video.

An application runs primarily in a web browser with no need for installation (the only necessary
installation is that of the Silverlight plugin itself). By means of a small downloadable component (plu-
gin), Silverlight allows controlling applications interactively in most modern web browsers (Internet
Explorer, Firefox, Safari) on various hardware and software platforms. Currently, there is direct support
for the Windows and Mac operating systems for the most popular browsers. A fully compatible open-
source implementation, Moonlight, is being developed for Linux. Applications created for this platform
use a major part of the .NET framework, which is included in the plugin (and can thus perform relatively
complicated calculations).

This makes Silverlight a platform that allows distributing simulators that can run right in a web
browser over the Internet (and for computers with different operating systems – the browser just has to
have the appropriate plugin).

The Microsoft Visual Studio with extensions for Silverlight can then be used to develop an actual
simulator. Simulator implementation languages are C# and F# (a functional language for .NET suitable
for the implementation of scientifi c calculations).

In the end, we will convert the source code for our model created in the Modelica acausal model-
ling language (which was discussed in a previous chapter) into the .NET platform and thus become able
to interconnect this modern modelling language easily with an environment in which we will develop a
simulator that will be able to run in a web browser window (Fig. 13).

11. Moving animations as puppets on the strings of simulation models
When creating a user interface for an educational simulator, it is very useful to present the simula-

tor outwardly as a moving picture. That is why we interconnect our simulation model with a multimedia
application created by means of Adobe Flash (Rusz and Kofránek, 2008, Kofránek 2009).

To give the application a professional appearance, it is necessary to have an artist do the anima-
tions – the results are incomparably better than animations created by a graphically gifted programmer.
However, this meant putting effort into training artists who had to learn how to work with tools for the
creation of interactive graphics. There is a critical shortage of such trained artists in the labour market.

Figure 13: The new solution for the creative interconnection of tools and applications for the creation
of simulators and educational programs using simulation games. The basis of an e-learning program is
still a quality script, created by an experienced teacher. The creation of animated pictures is up to the
artists, who create interactive animations in Expression Blend. The artist uses Animtester, a software
tool we have developed, to create and test animations that will be controlled by a simulation model in the
end. The core of a simulator is a simulation model, created in the environment of special development
tools for the creation of simulation models. We are now using a very effi cient environment that makes use
of the Modelica simulation language. We are currently working on a translator from Modelica to a .NET
component that will combine with a differential equation solver, also implemented in .NET, to form the
“data layer” of a simulator with the implemented model. The user environment is interconnected with
the simulation model by means of Data Binding, which ensures smart automatic propagation of values
between the layers, i.e. data transmission. We use state automatons (which can be used to remember
the relevant model context and user interface context) in the design of the internal application logic. We
have also developed a visual environment (Statecharts Editor) that allows designing such automatons
graphically, generating their code and debugging them. The resulting simulator is a web application
for the Silverlight platform, which allows distributing the simulator as a web application running right
in a web browser (on computers with different operating systems – the browser just has to have the ap-

propriate plugin).

That is why we began to cooperate closely with the Wenceslas Hollar Art School several years ago,
opening an “interactive graphics laboratory” as a detached department at this school.

We put much effort into training professional artists to work in the environment of Adobe Flash
and other tools for the creation of interactive graphics (including 3D). Our effort brought success. Art-
ists ceased to be shy of computers and quickly realized that a “digital brush” is just another tool for their
creative artistic expression and even that managing it would offer them new career opportunities.

We also initiated the establishment of a Higher Art College, which teaches “interactive graph-
ics” as a three-year course. Our laboratory personnel participate, among other things, in teaching at this
Higher Art College.

Animated pictures may be controlled by the outputs of an implemented simulation model and
graphically represent the meaning of numerical values – e.g. the schematic drawing of a blood vessel
may expand or compress, an alveolus may “breathe” deeply or shallowly, a measuring apparatus pointer
may move and continuously indicate the value of a model output value read from the simulation model
running in the background.

On the other hand, we can enter various inputs into the simulation model by means of visual ele-
ments created in Adobe Flash (various push-buttons, knobs, rods, etc.).

12. From Adobe to Microsoft, even in the creation of graphical interfaces
In addition to interconnecting the .NET environment with modelling tools (Modelica or Simu-

link), it is important to provide easy connection to created graphical user interface components. Flash
components can be incorporated into a created simulator by means of the ActiveX component. However,
bridging the gap between the two incoherent worlds of Adobe Flash and .NET requires more (manual)
programming work.

With the new WPF (Windows Presentation Foundation) technology, it is possible to create com-
plex graphical components containing animations, vector graphics, 3D elements etc. right in the .NET
platform (similarly to, and even with potentially more capabilities than in Adobe Flash).

Importantly, the created graphical user interface is directly integrated with .NET, avoiding the
necessity to bridge the gap between the non-homogeneous worlds of .NET and Adobe Flash.

An important feature of Silverlight is that it includes native support for animations. Thus, anima-

Figure 14: Patient intubation. An example of complex animation created in Expression Blend using
Animtester.

Figure 15: A beating heart animation. Model outputs affect the heartbeat phases, the opening and clos-
ing of the valves, etc. The Auxiliary Animtester controls are above the actual animation; they help the
graphic designer to debug individual sub-animations. Created animation can be subsequently directly
connected to model outputs in educational application and model can take full control of this animation.

tions are directly included in the applications and there is no need to use an additional platform (such as,
formerly, Adobe Flash) for the graphical layer.

Our tool of choice for graphic designs and the creation of animations is Microsoft Expression
Blend, in which we can create graphical interfaces, including those for Silverlight.

Microsoft Expression Blend has interfaces for both the artist and for the programmer. In addition,
Microsoft Expression Blend works directly over the project of an application created in Visual Studio
.NET. This eliminates the need to transfer the designer’s drafts to the application project, which makes
cooperation between the programmer and the design artist much easier.

The animation approach in Silverlight (originally designed for WPF) is based on animation us-
ing changes to certain scene properties in time (as opposed to the frame-based system in Adobe Flash).

This allows animating different scene proportions concurrently and smoothly, independently of
one another, thus creating a kind of multidimensional animation, or animation “puppets” that greatly
facilitate the implementation of the representation of various states and values in simulation models.

To make the creation of the graphical layer more effi cient, we have developed an auxiliary soft-
ware tool – Animtester, which designers-artists can use to create and debug such animation “puppets”
with no need for further programming (Figs. 14–15). Such created “puppets” can then be connected
directly to model outputs and there is no need to add an extra program interlayer for data propagation,
as used to be the case with Flash animations.

The utilization of the graphical possibilities of Silverlight more than substitutes for the original
approach of using animations based on Adobe Flash. We no longer need the Adobe Flash platform to
create animations as a visual interface for simulators; it can be fully replaced with new animation tools
from Microsoft.

The actual simulator (created in the Microsoft Visual Studio .NET environment), graphical com-
ponents (created in Microsoft Expression Blend for Silverlight) and the actual distribution channel (Sil-

?ídící
vrstva výstupy vstupy

Stavový
automat pro

ur?ení kontextu

Model
jako

.NET
komponenta

Data Binding

Silverlight 2.0
.NET

komponenta

Modelica .NET

Microsoft Expression Blend

Model
layer

Outputs Inputs

Simulation model

Hierarchic
state

automata

Model
jako

.NET
komponenta

Model
jako

.NET
komponenta

Model
as

.NET
component

Data BindingData BindingData Binding

Silverlight 2.0
.NET

komponenta

Silverlight 2.0
.NET

komponenta

Silverlight
.NET

component

Modelica .NET

Microsoft Expression Blend

Control
layer

Presentation
layer

(graphic user
interface)

Figure 16: The MVC architecture of a simulator in the making.

verlight) that allows running the created educational simulation application in a browser can thus be
created on a single platform.

13. Simulator structure – MVC architecture
With more complicated architecture, the logic of interconnection between the visual user interface

and the simulation model can be rather complex, so it is advisable to place a control layer in between
the layer of visual elements and the simulation model layer; the control layer controls all logic for the
communication between the user interface and the model and stores the relevant context. Literature calls
it MVC simulator building architecture (Model – View – Controller).

Such an arrangement is especially necessary for more complex models and simulators whose
user environment is represented by many virtual instruments on multiple interconnected screens. The
advantages of such an arrangement are particularly prominent in modifi cations to both the model and
the user interface (Fig. 16).

When creating the control layer interconnecting the simulation model layer with the user inter-
face, we found it very useful to use interconnected state automatons (which can be used to remember
the relevant model context and user interface context). Therefore, we created a special software tool that
allows us to visually design interconnected state automatons, interactively test their behaviour and au-
tomatically generate application source code for the Microsoft .NET environment (Stodulka et al. 2007,
Kofránek 2009). This tool allows streamlining the programming of links between the simulation model
and the visual objects of the user interface in an educational simulator.

14. Wrapping simulation games in multimedia lectures
One of the projects we develop in our laboratory is the above-mentioned Atlas of Physiology

Figure 17: Audio interactive lecture in the explanatory part of the Atlas of Physiology and Pathophysi-
ology. Every explanation is accompanied by animated images synchronized with the explanatory part.
Explanation can be stopped in any moment, to have a more detailed look at the accompanying anima-
tion. Explanation including the synchronized animations can also be moved backward using the slide in

the bottom part of the player.

and Pathophysiology (see http://physiome.cz/atlas/.). The Atlas (Kofránek et al.2007) is a continually
developed internet multimedia teaching aid from the fi eld of normal and pathological physiology that
uses simulation models to help explain the functions and disorders of individual physiological systems.

Simulation games are part of multimedia e-learning lectures, based on a script created by an
experienced teacher. The teacher proposes the explanatory text and the accompanying illustrations and
animations interconnected with the text. Animations are created in Adobe Flash with close cooperation
between the teacher and an artist.

The text is then recorded and synchronized with the start of individual animations. Every anima-
tion is synchronized accurately with the explanatory text (see fi g 17). However, the Internet-based Atlas
of Physiology and Pathophysiology is much more than just an animated explanation with an audio track.
The foundation of didactic effi ciency is represented by explanation accompanied by a simulation games
(fi g. 18).

Individual components of Atlas are assembled into training lectures

We use the software environment of an Adobe Connect (formerly Macromedia Breeze) server to
create and assemble the multimedia lectures.

The Atlas of Physiology and Pathophysiology is an open project. All educational texts, interac-
tive animations and simulation models, including their source code are available to all interested users.

15. From enthusiasm to technology and multidisciplinary collaboration
In spite of the fact that the use of computers in teaching has been the topic of a number of confer-

ences and expert and popularizing articles, in spite of the fact that hardware capabilities and software
tools have advanced to a level that allows the creation of sophisticated interactive multimedia, multime-
dia educational applications have not yet become signifi cantly widespread in medical training.

Figure 18: The Internet-based Atlas of Physiology and Pathophysiology is much more than just an ani-
mated explanation synchronized with an audio track. Simulation games accompanied by explanation

are the foundation of its didactic effi ciency.

There are several causes.

• First, the development of educational programs has proven to be more time-consuming and
intensive concerning human and material resources than usually planned.

• Second, the creation of high-quality medical training programs requires the multidisciplinary
team collaboration of experienced teachers, doctors, mathematicians, physicists, program-
mers and artists.

• Finally, there must be aptly chosen development tools available for the creative interconnec-
tion of the various professions participating in the development of an educational multimedia
application (but mastering the tools requires effort and time).

• The demands are even stricter if there should be a simulation program running in the back-
ground of the educational application to enable interactive simulation games – such a devel-
opment team must include experts who are able to design, formalize and debug the appropri-
ate models (doctors, mathematicians, physicists and IT experts).

We believe that the most important result we have managed to achieve in our laboratory so far is
that we have built a multidisciplinary team of doctors, mathematicians, programmers and artists who
can overcome the above-mentioned barriers.

The interdisciplinary team need tools facilitating communication and cooperation during work on
the commonly developed projects (fi g. 19).

There are a number of software tools available to support and coordinate team collaboration to-
day. WikiDoc, an open-source tool has proven to be very useful in our laboratory; it allows the easy use
of a web interface for the mutual communication of our team members. To take a peep into our interdis-
ciplinary team’s “kitchen” and become acquainted with the function of the “wiki” interface, readers are
welcome to visit our laboratory’s “wiki-web”: http://physiome.cz/wiki.

Figure 19: Atlas of Physiology and Pathophysiology is a joint work of a multidisciplinary team of peda-
gogues, system analyst, artists and computer scientists. In its process of creation, we strive to connect

specialists of various professions as well as the development tools.

16. New challenge and opportunity for colleges and universities
Our times are characterized by major changes in technologies that in turn change our economy,

society and lifestyle. The original competition for tons of products turned into competition for better and
faster information.

A new market segment is emerging with trade in intangible products, ideas, inventions and know-
how. Advances in technology generate pressure on the fl exibility of the labour force and increase the
demand for continual retraining. Lifelong learning is becoming a necessity in an increasing number of
fi elds.

The creation and implementation of retraining courses and education in the lifelong learning
process is facilitated and supported by the use of information technology. E-learning allows increasing
the capacity of colleges and universities and can bring them additional income from the development of
distance retraining and specialized postgraduate programmes.

From this point of view, e-learning is a new challenge for colleges and universities, one that will
need much effort but is also a huge opportunity for further development.

It seems that the time when the creation of educational programs was a matter of verve and hard
work for groups of enthusiasts is almost over. The development of modern biomedical educational ap-
plications is a demanding and complicated project that requires collaboration by a number of profes-
sionals – experienced teachers creating the underlying script, the creators of simulation models, doctors,
artists and programmers. To make such interdisciplinary collective development effi cient, it is necessary
to use specifi c development tools for each development stage, with suffi cient technical support, to allow
component-oriented creation of simulation models, development of interactive multimedia and the fi nal
integration into a compact whole according to the given script. Mastering such tools requires a lot of
effort, but it pays off.

References
[1] Abram, S.R., Hodnett, B.L., Summers, R.L., Coleman, T.G., Hester R.L (2007).: Quantitative Cir-

culatory Physiology: An Integrative Mathematical Model of Human Physiology for medical educa-
tion. Advannced Physiology Education, 31 (2), 202 - 210.

[2] Burkhoff D, Dickstein ML. (2002): The heart simulator. Available at: http://www.columbia.edu/itc/
hs/medical/heartsim./ Accessed June 3, 2009.

[3] Coleman T. G. and Randall J.E. (1983): HUMAN. A comprehensive physiological model. The Phys-
iologist, 26, (1), 15-21.

[4] Coleman T.G, Hester, R., Summers, R. (2008): Quantitative Human Physiology [Online] http://
physiology.umc.edu/themodelingworkshop/

[5] Comenius, I. A. (1656): Schola Ludus, seu Enciclopaedea Viva hoc est Janvae Linvarum Praxis
Comica. Sarospatak, 1656. Pars IV.

[6] Davis, M.J. (2001): Basic principles of synaptic physiology illustrated by a computer model Advan
Physiol Educ, 25, 1 – 12

[7] Davis, M.J, and Robert W. Gore, R.W (2001): Determinants of cardiac function: simulation of a
dynamic cardiac pump for physiology instruction Advan Physiol Educ, 25, 13-35.

[8] Guyton AC, Coleman TA, and Grander HJ. (1972): Circulation: Overall Regulation. Ann. Rev.
Physiol., 41, 13-41.

[9] Hester L. R., Coleman T., Summers, R. (2008): A multilevel open source model of human physiol-
ogy. Tea FASEB Journal, 22, 756

[10] Kelsey, R., Botello, M., Millard, B., and Zimmerman, J, (2002): An online heart simulator for aug-
menting fi rst-year medical and dental education. Proc AMIA Symp. 2002, 370–374.

[11] Kofránek J. Anh Vu L. D., Snášelová H., Kerekeš R., Velan T., (2001): GOLEM – Multimedia

simulator for medical education. In Patel, L., Rogers, R., Haux R. (Eds.). MEDINFO 2001, Pro-
ceedings of the 10th World Congress on Medical Informatics. 1042-1046, IOS Press, London.

[12] Kofránek J., Andrlík M., Kripner T, and Mašek J. (2002): From Simulation chips to biomedi-
cal simulator. In: Amborski, K. and Meuth, H. (Eds.) Modelling and Simulation 2002 Proc. of 16th
European Simulation Multiconference, 431-436, SCS Publishing House,Darmstadt, 2002.

[13] Kofránek, J., Kripner, T., Andrlík, M., and Mašek, J. (2003): Creative connection between mul-
timedia, simulation and software development tools in the design and development of biomedical
educational simulators. Orlando. In: Simulation Interoperability Workshop, Position papers, Vol-
ume II, paper 03F-SIW-102, 677-687. 2003.

[14] Kofránek J., Andrlík M, Kripner T and Matoušek S. (2005): Biomedical Educations with Golem.
In Mařík, V., Jacovkis, P., Štěpánková O., and Kléma J. (Eds). Interdisciplinary Aspects of Human-
Machine Co-existence and Co-operation, 142-151, Czech Technical University, Prague.

[15] Kofránek J., Matoušek S., Andrlík M., Stodulka P., Wünsch, Z., Privitzer P., Hlaváček J.,
Vacek O. (2007): Atlas of physiology - internet simulation playground. In: Proceedings of the 6th
EUROSIM Congress on Modeling and Simulation,(Zupanic B., Karba R., Blažič S. Eds.), Vol. 2.
Full Papers (CD). 1-9, University of Ljubljana, Ljubljana, 2007.

[16] Kofránek, J (2009): What is behind the curtain of a multimedia educational games? (2009):
In EATIS 09 Contribution Proceedings. Euro American Conference on Telematics & Information
Systems, Prague 3-5 June 2009, (Svítek Ed.),Wirelesscom sro., 2009, ISBN 978-80-87205-07-5,
229-236.

[17] Meyers R., Doherty C, Geoffrion L. (2008): Web-Human Physiology Teaching Simulation
(Physiology in Health, Disease and During Treatment) Available http://placid. skidmore.edu/hu-
man/index.php

[18] Oostendorp, T. (2004): ECGSIM: an interactive tool for studying the genesis of QRST wave-
forms. Heart. 9,165-168.

[19] Rusz J., Kofránek J. (2008): Tools development for physiological educational simulators. In
Digital Technologies 2008 (Daša Ticha Ed.) [CD-ROM]. Žilina: University of Žilina, Fakulty of
electrical engineering, 2008, vol. 1, ISBN 978-80-8070-953-2,(CD ROM), 1-4

[20] Stodulka P., Privitzer P., Kofránek J., Tribula M., Vacek O.(2007): Development of WEB acces-
sible medical educational simulators. In Proceedings of the 6th EUROSIM Congress on Modeling
and Simulation, (Zupanic B., Karba R., Blažič S. Eds.) , Vol. 2. Full Papers (CD) 1-6, University
of Ljubljana, Ljubljana, 2007.

Acknowledgement
Work on the development of medical simulators is supported under the National Research Pro-

gramme, project MSMT. 2C06031 (“eGolem”), by research MSM 0021620806 and by Creative Con-
nections s.r.o.

Jiří Kofránek, M.D., Ph.D.
Laboratory of Biocybernetics,
Institute of Pathological Physiology,
U nemocnice 5, 128 53 Praha 2, Czech Republic
email: kofranek@gmail.com
phone: +420-777686868

Marek Mateják, M.Sc.
Laboratory of Biocybernetics,
Institute of Pathological Physiology,
U nemocnice 5, 1208 53 Praha 2, Czech Republic
email: marek@matfyz.cz
phone: +420-776301395

Pavol Privitzer M.Sc., M.D.
Laboratory of Biocybernetics,
Institute of Pathological Physiology,
U nemocnice 5,1208 53 Praha 2, Czech Republic
email: pavol.privitzer@lf1.cuni.cz
phone: +420-608274982

