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Abstract

In order to estimate the correct size of population, estimations of population sizing have
been used in the genetic algorithms (GAs). The estimation considers a test function being
optimized, a representation of individuals and a character of used operators. By means of the
estimation model the right population size with taking into account the final overall quality
of individuals is identified. This article extends the Gambler’s ruin model (GRM) by a new
equation for convergence time.

1 Introduction

There have been several significant attempts on the population sizing. Holland [4, 5] idealized
the process in a GA as a cluster of parallel and interconnected 2k-armed bandit problems. The
Holland’s bandit problem was extended by De Jong [6] in the equation for population sizing. It
was representing the basic noise-to-signal equation. Although the equation was not extended in
the De Jong’s dissertation, it gave a first assessment on the population sizing problem.

In [1], the statistical decision theory was exercised. The authors were modeling a GA run
as competitions between the best and the second best BBs (building blocks). Every BB was
built-up from m partitions of order k. Order k means how many cells are in an every single
partition. Two BBs were represented with their mean fitnesses and fitness variances. One of
the outputs of the research [1] was that the probability of the right choice in a single trial of a
problem (with m equally sized partitions) is

p = Φ(
d√

2m′σbb

), (1)

where Φ is the cumulative normal distribution function (CDF), σ2
bb is the average BB

variance of the partition that is being considered, m′ is a number of competing partitions (m′ =
m− 1) and d is the fitness difference between the best and the second best BBs.

In [2], the authors used the well-known the gambler’s ruin problem (also one-dimensional
random walk) with absorbing barriers at x = 0 and x = β representing convergence to the wrong
(0 represents gambler’s bankruptcy) and the right solutions (β, β > 0 representing a win of all
opponent’s money), respectively. Variables p and 1− p are probabilities that the best BB takes
over the second best or vice versa. An initial seed defined as x0 = n

2k (of k order) was used, and
the functional analogy between GAs and the gambler’s ruin problem supposed several conditions
as follows: First, the competition takes place between the best and the second best BBs in a
partition. Second, crossover and mutation do not destroy significant number of BBs. Third,
boundaries of the random walk are absorbing. The well-known equation1 [3] was employed to
get the quality of a solution as the number of X ∈ m partitions converged to the right BBs.

Pbb =
1− (1−p

p )n/2k

1− (1−p
p )n

, (2)

1A result from the theory of random walk is that a particle will be eventually captured by the absorbing barrier
at x = β. The captured particle in the theory of random walk that reflects the partition of interest contains β
copies of the correct BBs in the GA world.



where Pbb is a percentage of well-converged partitions. The initial population size is
x0 = n/2k, because it represents expected number of copies of the correct BB in a randomly
generated population n. Probability p is defined above. It holds p > 0.5 while the mean fitness
of the best BB is greater than the second best BB. The probability p must be obtained from
the equation (1).

We simplify here the equation (2) above under conditions n À x0 and p > 0.5. Under
these conditions and while n grows the denominator goes to 1 and one simplifies the equation
to

Pbb ≈ 1− (
1− p

p
)n/2k

. (3)

Comparison between the original and simplified versions of the Pbb equations is depicted
in Figure 1. We show that there are sizable discrepancies for small p, k and population sizes
n. On the other hand, the discrepancies disappear when the parameters p and k are bigger as
it is demonstrated. The simplified version of the equation holds for {n ≥ 25, p ≥ 0.520, k = 1;
n ≥ 15, p ≥ 0.585, k = 2; n ≥ 5, p ≥ 0.65, k ≥ 3}, sufficiently. In the other cases, one must use
the original version (2).
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Figure 1: Figures depicts variance between the original Pbb and the simplified Pbb for two cases.
The original one is represented with dots and the simplified one with crosses. One can see that
figures differ in the order of BB k and the probability p. The simplified equation holds for
n ≥ 15, p ≥ 0.520 and k ≥ 1 fairly well.

From this simplified equation one can derive an equation for the population size (n) such
as

n =
2k. ln(1− Pbb)

ln(1−p
p )

. (4)

The equation (4) estimates the population size (n) for a GA problem. The probability p
from the equation (1) has been dependant on the number competing partitions (m′), a problem
being optimized (σbb) and the fitness difference (d). Different population sizes (n) would reflect
different proportions of BBs (Pbb). Three characteristics which demonstrate the dependence
given by the equation above are in Figure 2. There is shown the dependency of estimated
population size on three parameters such as p, k and Pbb.
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Figure 2: Figures depicts the behavior of the population sizing equation (4) in several views.
Red and green lines are the most simple and most complex problems, respectively. Blue lines
show problems of complexity somewhere between these two extremes. One can see that the
estimate of the population size is not linear in any case. The three graphs show reliance of the
Popsize on order of BB, probability p and the percentage of well-converged partitions Pbb (from
left to right). The first graph shows increasing p as k order of BB increases. The second graph
depicts curves related to decreasing k. The third graph illustrates decreasing k and p.

2 Time convergence of GA

In the previous section, the estimation of the correct population size of GA was derived. We
keep following an analogy between Gambler’s ruin problem (GRP) and GA as well for the time
convergence of GA. If we can say that we have some estimation when a game terminates in
GRP, we can say that this holds for a GA when the GA converges.

In [3], there is an equation that describes the expected duration of the game Dz in the
classical Gambler’s ruin problem (5),

Dz =
( z

q − p
− a

q − p

)
.
(1− (q/p)z

1− (q/p)a

)
, (5)

where z is the initial capital of a gambler, a gain of an opponent capital is a − z, the
total capital involved is a, a gambler wins one game with the probability q and losses with the
probability p. And it holds p + q = 1. If p > q, the game is favourable to the gambler and vice
versa.

We take the equation (5) and we change it for GA. The number of correct BBs (the initial
capital) is z ∼ n/2k and all converged BBs is a ∼ n. The duration of the game Dz is replaced by
the number of generations Tconv in the GA case. Under the condition p 6= 0.5 and after simple
algebraic adjustments we receive the equation (6). The equation describes the expected number
of generation till a GA convergence.

Tconv =
(n/2k − n

1− 2p

)
.
(1− ((1− p)/p)n/2k

1− ((1− p)/p)n

)
(6)

As one can easily see the second part of the equation (6) equals (2), so we can simplify
Pbb as previously in (3),

Tconv =
(n/2k − n

1− 2p

)
.
(
1− (

1− p

p
)n/2k

)
. (7)

The second part of the equation (7) is replaced by Pbb, so we get



Tconv = Ac.Pbb, (8)

where Ac = (n/2k−n)
1−2p and Pbb = 1 − (1−p

p )n/2k
, n is the population size, k is order of BB

and p is the probability of the right choice. This equation (8) gives the time estimation when a
GA converges.

A problem to be optimized by a GA has to be somehow encoded into the GA. The
probability p, the proportion of correct BBs Pbb and the order of BBs k are input variables to
reach the estimate of correct population size n for the optimized problem in the equation (4).
Similarly, based on the previous input variables and the estimate of the population size, the
time to convergence of a GA Tconv can be calculated from equation (7).

3 Experiments

The experiments utilized the Genetic Algorithm and Direct Search toolbox, which is a dedicated
GA related toolbox in Matlab R2006a. The toolbox is a GA toolkit to analyze, test and examine
a GA and its parameters. The toolbox also helps to visualize the results and various data
conversion between Matlab and other calculation software. The experiments were run on a
commodity PC computer with Intel Celeron 2.8GHz, 1GB RAM and Windows 2000 SP4 (EN).

3.1 GA parameters

Table 1: Tabulated GA parameters for 5 test cases (TC). The cases vary in the
parameters such as Population representation (PopType), Selection, Crossover
and Mutation. The parameters (or their values in brackets), which are not in
this table, used predefined default values. As far as the numeric values are con-
cerned, tournament(4) means a tournament size of 4, heuristic(1.2) is a default
ratio of 1.2, gauss(0.5/0.75)–the default values of scale and shrink parameters
are 0.5 and 0.75 and finally, uniform(0.01) is the probability rate of being mutated
0.01.

Parameter TC1 TC2 TC3 TC4 TC5
PopType doubleVector bitString bitString doubleVector bitString
Selection stochuniform roulette remainder tournament(4) uniform
Crossover scattered singlepoint twopoint heuristic(1.2) intermediate
Mutation gauss(0.5/0.75) uniform(0.01) adaptfeas uniform(0.01) gauss(0.5/0.75)

In Table 1, five test cases were defined – TC1, TC2, TC3, TC4 and TC5. The cases vary
in Population representation (PopType), Selection, Crossover and Mutation. More possible
combinations of test cases were possible but these had been selected. Five selection schemes
and crossover operators were chosen. Three mutation operators with non-zero probability were
set in all experiments. In Table 2, there are GA parameters that did not change during the
experiments at all. The GA parameters in both Tables are quite self-descriptive as well as
well-known in the GA community and would not be explained in detail.

3.2 Experimental setup

The GRM was parameterized that the source of diversity is the initial random population. It
was used the Matlab’s Rand(n) function to generate uniformly distributed random numbers.

Every single run of GA used a new initial random population to evolve the solution.
Termination of each run was achieved when the population converges completely or in the
more difficult fitness function after bound on the number of generations is reached. Due to
no mutation, the complete convergence was possible. All the results are the averages of 3
independent runs of a simple GA.



We made use of several test functions with various degrees of computational complexity.
In Table 3 table below shows seven test functions for GA.

3.3 Population sizing

The population sizing problem has been investigated and experimented with in various scientific
papers such as [1, 2].

Fig. 3 confirms the population sizing theory. The theory says there exists a population size
that helps to solve the optimized problem sufficiently. Notice that from a ”critical” population
size ncrit ∼ 51, the curve approaches optimum very quickly. The critical population size is
estimated by the population sizing models.

3.4 Time convergence of GA

In the theoretical part, we had proposed the equation (7) that gives an estimate of the time
convergence for GA (Tconv). In next subsection, we identify if the equation, under several
conditions, reflects the GA run. Experiments were executed to reveal prospective flaws and
inconsistencies.

3.5 Results

In Figure 4, one can see the Tconv volatility in the GA run such as short and narrow peaks. The
largest peaks are at n = 130 and n = 260. Variances of the time convergence are skewed to
upside. The trend of the curve is asymptotically robust.

In Figures 5-9, the time convergence for GA Tconv has been shown based on population
size n for five test cases each. Every test case corresponds to two figures (left n ≤ 300, right

Table 2: Tabulated GA default parameters for 5 test cases (TC). These parame-
ters were default for all GA experiments.

Parameter Value
FitnessScale rank
CreationFcn uniform
PopulationSize 5− 1000
EliteCount 2
CrossoverFrac 0.8
Generations 300
StallGenLimit 50
StallTimeLimit 50
InitialPenalty 10
PenaltyFactor 100

Table 3: Selected GA test functions and their parameters for experimental ver-
ifications. The name, equation, definition interval x and the global minimum
min(f(.)) of GA test functions are tabulated.

f(.) Name Equation x min(f(.))
f1 Zeromin f(x) =

∑100
i=1 xi < 0, 1 >100 0

f2 DeJong’s1 f(x) =
∑3

i=1 x2
i < −5.12, 5.12 >3 0

f3 DeJong’s2 f(x) = 100.(x2
1 − x2)2 + (1− x1)2 < −2.048, 2.048 >2 0

f4 Rastrigin’s f(x) = 10.n +
∑n

i=1(x
2
i − 10. cos(2.Π.xi)) < −5.12, 5.12 >2 0

f5 Ackley’s f(x) = 20 + ex1 − 20.e−0.2.
√

((1/n).
∑n

i=1
x2

i ) < −32.768, 32.768 >2 ∼ 2.98
−e1/n.

∑n
i=1 cos(2.Π.xi)

f6 Eggholder N/A < 0, 80 >2 −33
f7 Shu N/A < −2.0, 2.0 >2 ∼ −184
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Figure 3: The fitness of population Fpop. Both figures show the same Fpop based on population
sizes but with different y-axes. Figures are Fpop (left) and −log(Fpop) (right). It is easy to see
that there exists a ”critical” population size ncrit ∼ 51, which gives a very favorable result. The
test function was f4.

n ≤ 1000). The functions are of various complexities, therefore they show variations and some
do fluctuate very wildly.
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Figure 4: The Tconv model vs. the volatility of a GA run. Figure shows Tconv based on population
sizes. The test function was f4. In detail, one can see small peaks and discrepancies in the graph
instead of expected linearity. GA parameters were set for TC1.

4 Discussion

In Figure 4, one see small spikes of various sizes. The spikes are more above the line than below.
This figure shows the real experimental data after one independent GA run. When one adds
more GA runs and calculates averages, the depicted results are far more smooth and close to
the line generated by the model.

The convergence time Tconv was tested in a GA domain. However, we experienced several
tiny discrepancies, the experiments provided fair robust support for the convergence time equa-
tion. Some functions also showed increased variance and volatility, but we see the results very
satisfactory.

In Table 4, a short summary of our experimental results is scored. In Figures 5-9, several
variables were evaluated. The variables were adequacy to the model (”model”), successful run
(”succ”), trend following (”trend”), volatility (”vol”) and sequence order of the curves (”order”).
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Figure 5: Test case one – TC1. Figure depicts the functional dependency of Tconv on the
population sizes n = 300 (left) and 1000 (right) for TC1. The test functions were f1-f7.
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Figure 6: Test case two – TC2. This figure depicts the functional dependency of Tconv on the
population sizes n = 300 (left) and 1000 (right) for TC2. The test functions were f1-f7.
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Figure 7: Test case three – TC3. Figures depicts the functional dependency of Tconv on the
population sizes n = 300 (left) and 1000 (right) for TC3. The test functions were f1-f7.

The volatility is the only variable when a lower result value is better (negative variable). For the
other variables (positive ones), it is quite opposite, higher values mean more favorable results.
Evaluation scores were only 0 (negative) or 1 (positive) for each test function in each test case
and these scores were summarized for each test case.
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Figure 8: Test case four – TC4. Figures depicts the functional dependency of Tconv on the
population sizes n = 300 (left) and 1000 (right) for TC4. The test functions were f1-f7.
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Figure 9: Test case five – TC5. Figures depicts the functional dependency of Tconv on the
population sizes n = 300 (left) and 1000 (right) for TC5. The test functions were f1-f6. The
test function f7 did not run correctly and was not included.

We argue that experimental results were quite positive. All positive variables scored
Sε ≥ 91.18 and better. The only negative one, volatility, was under Sε ≤ 26.47. That means

Table 4: A short summary of experimental results. In the figures, several vari-
ables were evaluated. The variables were adequacy to the model (”model”),
successful run (”succ”), trend following (”trend”), volatility (”vol”) and se-
quence order of the curves (”order”). Only volatility is a negative variable,
others are positive. Evaluation scores were only 0 or 1 and these were summa-
rized for each test case. Sε is calculated as Score/Smax.

TC model succ trend vol order
TC1 7/7 7/7 7/7 1/7 7/7
TC2 7/7 7/7 7/7 2/7 7/7
TC3 6/7 7/7 7/7 1/7 6/7
TC4 5/7 6/7 6/7 3/7 6/7
TC5 6/6 6/6 6/6 2/6 5/6
Score/Smax 31/34 33/34 33/34 9/34 31/34
Sε[%] 91.18 97.06 97.06 26.47 91.18



that the volatility of test results was higher in 26.5% cases. One of the main reasons of higher
volatility results is that only 3 independent runs of GA were exploited. When we averaged the
same results over 5, 10 and 15 independent runs of GA, the volatility decreased gradually, but
calculations took very long. Nevertheless, the quality of experimental results with 3 independent
runs was good enough and sufficient in our opinion.

The experiments evidenced that there is a sufficiently strong linkage between the duration
of the game Dz in the Gambler’s Ruin Problem and the convergence time Tconv in GA. The
linkage can be further developed and exploited in the GA domain.

5 Conclusion

The paper explains basics of the Gambler’s ruin model (GRM). GRM is a model to propose the
estimate of the correct population size for an optimized problem. This model was extended by
a new equation (7) for the estimate of convergence time. So now, the model proposes not only
the estimate of population sizes but also the estimates of convergence time for GA measured as
the number of generations needed.

The model was examined under several GA test functions, variously parameterized GA
and the model showed good robustness. The comparison between the extended model and
the verification runs of GA as well as the results from the experiments reflected closeness to the
theoretical proposal. From the practical point of view, the extended GRM provides the estimate
of a population size and of time convergence for GA now. The estimates can be calculated one
after the other or quite independently. With extended GRM, GA practitioners have one tool to
design and to parameterize efficient GAs.

References

[1] D. E. Goldberg et al. Genetic algorithms, noise, and the sizing of populations. Complex
Systems, 6:333–362, 1992.

[2] G. Harik et al. The gambler’s ruin problem, genetic algorithms, and the sizing of populations.
Proc. of the IEEE International Conference on Evolutionary Computation, pages 118–125,
1997.

[3] W. Feller. An introduction to probability theory and it’s applications, volume 1. Wiley, Essex,
U.K., second edition, 1966.

[4] J. H. Holland. Genetic algorithms and the optimal allocations of trials. SIAM Journal of
Computing, 2(2):88–105, 1973.

[5] J. H. Holland. Adaptation in natural and artificial systems. University of Michigan Press,
Ann Arbor, U.S.A., 1975.

[6] K. A. De Jong. An analysis of the behaviour of a class of genetic adaptive systems. University
of Michigan, Ann Arbor, U.S.A., 1975.
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