
TECHNICAL COMPUTING USING SYBASE DATABASE

FOR BIOMEDICAL SIGNAL ANALYSIS

J. Krupa, A. Procházka, V. Hanta, R. Háva

Institute of Chemical Technology, Prague
Department of Computing and Control Engineering

Abstract

Design a storage for a large amount of biomedical data in a structured way is a hard
task. Especially if there is a requirement for realtime access to all of the stored data. For
this purpose we decided to use Sybase Adaptive Server Enterprise as a main database engine
and MathWorks MATLAB for mathematical data manipulation. Our database consists of
approximately 40000 patient EEG anamneses. Each of them is around 120000 records in
size.

Many programming languages contain native libraries for Sybase database access. We
tried the implementation in Python and PHP programming languages. For the demonstra-
tion there is an example of distributed computing platform based on the database access from
all of the application components - Python worker and data dumper, PHP web interface and
MATLAB data manipulation script.

1 EEG Database Structure

Because of the large quantity of data which we needed to store into database we had to design
the right database architecture to be able to use the database effectively. We worked with two
possible database schemas.

One of the schemas consist of three tables. The main table with all of the records from
all patients with foreign key for patient identification, the other two for list of patients and
measures. Because of the massive amount of rows needed for this solution and also because
there wasn’t demand to use just part of the data for one patient we decided not to use this
schema for production use. We although used this schema for simple comparison on how to add
large amount of data into the database.

The second schema consists of two tables - one for list of patients, one for list of patient
anamneses and binary blob as a storage for the 120000 * 19 records. It’s not possible to select
parts of the patients anamneses on database level but it is much faster in terms of adding and
later access to the data in the database. All recordings are stored in both filtered variation
with 50Hz frequency component removed [6] as well as original data without any filters applied.
Because the binary MAT file format has publicly available specification [2] we decided to use it
for the binary storage of the data in the database.

2 MATLAB Database Toolbox

MATLAB Database Toolbox [1] supports communication using ODBC or JDBC driver with
compatible database including IBM DB2, IBM Informix, Ingres, Microsoft Access, Microsoft
Excel, Microsoft SQL Server, MySQL, Oracle, PostgreSQL, Sybase SQL Anywhere and Sybase
SQL Server.



A JDBC driver is a software component enabling a Java application to communicate
with a database. To connect with each databases type JDBC requires drivers. The JDBC
driver provides the connection to the database and implements the protocol for transferring the
communication between client and database.

The Mathworks
MATLAB

Database
Toolbox

JDBC
Driver

Sybase
Adaptive Server

Enterprise

Figure 1: MATLAB - Sybase communication schema

There are two JDBC drivers available for use with Sybase database. jConnect is provided
by Sybase for free. jTDS driver is capable of connecting to Sybase database as well as Microsoft
SQL Server. It is open-source product available for free.

Listing 1: Database toolbox usage
% Database settings

db_host = ’hostname ’;

db_name = ’eeg’;

db_user = ’user’;

db_pass = ’password ’;

% JDBC Parameters

jdbcString = sprintf(’jdbc:jtds:sybase ://%s/%s’, db_host , db_name );

jdbcDriver = ’net.sourceforge.jtds.jdbc.Driver ’;

%javaaddpath(’jtds -1.2.2.jar ’)

% Create the database connection object

dbConn = database(db_name , db_user , db_pass , jdbcDriver , jdbcString );

% Check to make sure that we successfully connected

if isconnection(dbConn)

% Create the database query

db_query = "";

% Submit database query to the database

disp(db_query)

result = get(fetch(exec(dbConn , db_query)), ’Data’);

% If there is some problem with the database query , display it

% on the screen

if (result ~= 0)

disp(result );

end

% If the connection failed , print the error message

else

disp(sprintf(’Connection failed: %s’, dbConn.Message ));

end

% Close the connection so we don ’t run out of MySQL threads

close(dbConn );

2



3 Inserting Data Into Database

3.1 INSERT statement

One of the simplest methods to put data into database using MATLAB and MATLAB Database
Toolbox is by INSERT statement as showed on Listing (2). This is probably the easiest and
fastest way if there is a need to add small quantity of data. It becomes slow for large amount
of records.

Listing 2: Simple INSERT statement
db_query = "INSERT INTO test (a1, a2) VALUES (1, 2)";

result = get(fetch(exec(dbConn , db_query)), ’Data’);

3.2 MATLAB fastinsert function

There is fastinsert function available in MATLAB which should be used for insertion of larger
amount of data to the database. The example can be seen on Listing (3).

Listing 3: fastinsert function example
fastinsert(dbConn , ’eeg’, namecols , exdata );

3.3 Using Sybase tools

All major databases on the market includes various set of command line administration tools
for mass import of data. Sybase Adaptive Server Enterprise [5] comes with bcp tool which can
be used for this purpose. It takes comma-separated values (CSV) file as an input and put it
into the database. The main advantage of this method is its speed.

In order to export large matrix from MATLAB into CSV file format we can use csvwrite
or dlmwrite functions as shown on Listing (4).

Listing 4: MATLAB dlmwrite function example
dlmwrite(’output1.csv’, data , ’precision ’, 6);

There are several database configuration options which can be used to speed-up the whole
process. Disabling the transaction log is advised as well as enabling the “select into/bulkcopy-
/pllsort” option in database properties.

As we can see from the Table (1) in terms of speed the best way to import data into
database is to export them from MATLAB to CSV file and use bcp tool provided with Sybase
Adaptive Server Enterprise.

Table 1: Comparison of the time needed to insert records into database

Records
Time [s]

ASE dbo ASE bcp
1000 13 0.5

3



4 Mathematical Application

One of the major goals of the database storage deployment was the ability to deliver data to var-
ious platforms using different programming languages and operating systems. We achieved that
by using standardized communication interfaces provided by JDBC driver as well as language-
specific database connectors for Sybase Adaptive Server Enterprise.

Database as a core structure part is used in one of the distributed computing engines we
use to process EEG data [3]. It is a hybrid product created on our department using MATLAB,
Python [4] and PHP programming languages. One of the applications is distributed computing
of interpolated EEG images as we can see on Fig. (2).

(a) Nearest neighbor (b) Linear (c) Weighted distance

Figure 2: Output from distributed computing engine in Python - Different interpolation methods

Acknowledgements

The work has been supported by the research grant of the Faculty of Chemical Engineering
of the Institute of Chemical Technology, Prague No. MSM 6046137306.

References

[1] The MathWorks Inc. Matlab documentation. 1984-2009. Available from World Wide Web:
http://www.mathworks.com/access/helpdesk/help/techdoc/.

[2] The MathWorks Inc. Mat-file format. 1999.

[3] J. Krupa. Three Dimensional Modelling of EEG Signals. VŠCHT Praha, 2009.

[4] M. Lutz. Learning Python, 3rd Edition. O’Reilly, 2008.

[5] Sybase. Adaptive Server Enterprise 15.0.3. 2009.

[6] S. V. Vaseghi. Advanced Digital Signal Processing and Noise Reduction. John Wiley & Sons
Ltd, West Sussex, 2006.

4


