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Abstract 

Model Predictive Control (MPC) is a modern powerful control strategy which 
reached wide popularity in industry but also academic sphere. MPC allows adding 
constraints in input changes calculation in principle but a QP problem has to be 
solved in this case. The paper describes a fast QP algorithm. The fastness of the 
algorithm is compared with QP algorithm from MATLAB Optimization Toolbox. 

1 Principle of Model Predictive Control 
By Camacho [CAMACHO, 2002] Model Predictive Control doesn’t designate a specific control 

strategy but a very ample range of control methods. The common ideas appearing in greater or lesser 
degree in all the predictive control family are basically: 

• Explicit use of a model to predict the process output at future time instants. 
• Receding strategy, so that at each instant the horizon is displaced towards the future, which 

involves the application of the first control signal of the sequence calculated at each step. 
• Calculation of a control sequence minimizing an objective function 

The minimizing of the objective function is the article’s point of interest. The objective function 
differs at particular MPC algorithms but the general aim is that the future output y on the considered 
horizon should follow a determined reference signal w and, at the same time, the control effort Δu 
necessary for doing so should be penalized. The expression of such an objective function for Multi 
Input Multi Output case is 
  (  ,   ,   ) = (  − ) .   . (  −  ) + ∆  .   . ∆  (1) 
where    (  ) prediction horizon minimum (maximum)     length of control horizon    vector of outputs prediction on prediction horizon   vector of desired outputs values on prediction horizon  ∆  vector of control efforts on control horizon   ,   positive semi-definite weighting matrices 

This objective function can be transformed to  
 minimize   (Δ ) =   . Δ  .  . Δ + Δ  .   (2) 
and in case that constraints are considered 
 minimize  (Δ ) =   . Δ  .  . Δ + Δ  .   (3) 
    subject to       . Δ ≥    

The equation (3) is a standard Quadratic Programming (QP) problem with constraints defined 
by set of inequalities. 

2 Quadratic Programming 
Exist many ways how to solve QP problem with constraints. A QP algorithm and its theory are 

described in the chapter 2.1. This algorithm needs an initial feasible point on begin, hence an 
algorithm for its calculation is described in the chapter 2.2. Both chapters draw from [FLETCHER, 
2006]. 



2.1 The algorithm 
The algorithm is based on primal active set method where certain constraints, indexed by active 

set  , are regarded as equalities whilst the rest are temporarily disregarded. The method adjusts this 
set in order to identify the correct active constraints at the solution to (3). On iteration k a feasible 
point Δ ( ) is known which satisfies the active constraints as equalities, that is 
    . Δ ( ) =   ,  ∈   (4) 
so each iteration attempts to locate the solution to an equality problem (EP) in which only the active 
constraints occur. This is most conveniently done by shifting origin to Δ ( ) and looking for a 
correction  ( ). The active constraints can be written in matrix form 
   . Δ ( ) =   (5) 
where A is n x m matrix and collects the column vectors ai. b is a column vector of the length m 
composed by bi. The original QP problem is then transform to the form 
   minimize   ( ) =    .   .  .  +   .  ( )  (6)    subject to     .  =   
where 
  ( ) =  +  . Δ ( ) (7) 

The objective function (6) is solved by the method of Lagrange multipliers. The Lagrangian 
function is 
 ℒ( ,  ) =   .  .  .  +   .  ( ) −   .   .   (8) 

The solution of the function is given by equations 
  ( ) = − .  ( ) (9) 
  ( ) =   .  ( ) (10) 
where explicit expressions for H and T are 
  =    −   .  .    .    .     .   .     (12)  =    .  .    .    .      

If  ( ) from (9) is feasible with regard to the constraints not in  , then next iterate is taken as  
 Δ (   ) = Δ ( ) +  ( ) (13) 

If not then a line search is made in the direction of  ( ) to find the best feasible point. Then the 
step  ( ) is 

  ( ) = min  1,      .  ( )   . ( )         for  ∉    and      .  ( ) < 0 (14) 

If  ( ) < 1 then a new constraint becomes active and is moved to the active set. 

If  =  , then it is possible to compute multipliers  ( ) by equation (10). If all   ≥ 0 then Δ ( ) is the global solution Δ ∗ otherwise there exists an index q,  ∈  ( ), such that   ( ) < 0. In this 
case it is possible to reduce (3) by allowing the constraint q to become inactive. Thus q is removed 
from   and the algorithm continues as before by solving the resulting EP (6). If there is more than one 
index for which   ( ) < 0 then q is selected by 

   = min  ( ),    ∈   (15) 

The primal active set method algorithm can be summarized as follows: 

1. Given Δ ( ) and  ( ), set k=1. 
2. Solve (9). If  ( ) ≠   go to 4. 
3. Compute Lagrange multipliers  ( ) by (10) and solve (15). If   ( ) ≥ 0 terminate with  Δ ∗ = Δ ( ), otherwise remove constraint q from  . 
4. Get  ( ) from (9). 
5. Find  ( ) from (14). 
6. Set Δ (   ) = Δ ( ) +  ( ).  ( ). 
7. If  ( ) < 1, add p to  . 



8. Set  =  + 1 and go to 2. 

2.2 Initial feasible point 
The algorithm described in 2.1 requires an initial feasible point ∆ ( ) and an appropriate active 

set  ( ). These can be obtained by solving an auxiliary problem 
   minimize ∑  b −    . Δ   ∈ ( )   (16) 
    subject to              . Δ ≥     
where  ( ) is the set of violated (infeasible) constraints at Δ ( ). This objective function is solved in 
similar way as linear programming problem. 

The iteration commences by creating the initial vertex ∆ ( ) =  . Also pseudoconstraints Δ  = 0,  = 1, . . ,   are added to the problem, if they are not already present, and form the initial 
active set     . Once a pseudoconstraint becomes inactive it is removed from the problem.  

At Δ ( ) the gradient of the cost function is −∑    ∈ ( )  and the Lagrange multiplier vector 
  = −   .  ∑    ∈ ( )   (17) 
is evaluated, where A now denotes the n x n matrix with columns   ,  ∈     . Let the columns of     be written    then vectors    are the directions of all feasible edges at  Δ ( ), and the multipliers    are the slopes along these edges. Thus if  
   ≥ 0,  ∈      (18) 
then no feasible descent direction exists, so Δ ( ) is optimal and the iteration terminates. Otherwise 
the most negative    (   say) is chosen, and a search is made along the downhill edge 
 Δ (   ) = Δ ( ) +  ( ).   ( ) (19) 

The search is terminated by the first inactive constraint (p say) to become active. Candidates for 
p are therefore indices  ∉      with    .   ≠ 0 and such constraint function becomes zero when 

   =       .  ( )   .   (20) 

Thus the index p and the corresponding value of α are defined by 

  = min : ∉       .    
      .  ( )   .   (21) 

The new vertex is defined by (19) and the new active set      is obtained by replacing q by p. 
The iteration is then repeated from this new vertex until Δ ( ) is found to be a feasible point. All 
added pseudoconstraints are removed from final active set      on the end. 

3 Practical realization 

3.1 Algorithm description 
The realization of the theoretical part consists from two separated algorithms. The first one is 

used as initial feasible point generator based on theory from chapter 2.2. It has been created as a 
function with two inputs and five outputs and it is called “initial_condition”. Its inputs are the matrix 
A and vector b. Outputs are an feasible point x0, active constraints described by a matrix Ac and a 
column vector ac and inactive constraints described by a matrix Nc and a column vector nc. 

Second algorithm is the realization of described QP algorithm from chapter 2.1. It is also 
realized as a function and is called “qpas”. The function has seven inputs parameters and one output 
parameter. Its inputs are an initial feasible point x0, matrix G and vector g describing the objective 
function, and active and inactive constrains described by Ac, ac, Nc and nc. The output is then the 
solution of the QP problem x. The created functions are attached on the CD. 



The first algorithm has not to be used implicitly of course but the second algorithm requires an 
initial feasible point as function input1.  

3.2 Algorithm testing 
Although the algorithm was created for a MPC controller, its implementation to the controller 

isn’t aim of this paper. Only its testing and speed comparison is described here. 

The testing problem is described by equation (3) where  
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The constraints are given by 

 5,31 ∈x  3,32 −∈x  1.0,5.03 −−∈x  34 ≤x  (23) 
which can be written by 
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The comparison of the algorithm with the standard QP algorithm from MATLAB Optimization 
Toolbox has been done for two variants. The time needed to reaching of the solution was observed in 
both cases. In the first was the initial feasible point calculated separately and then was relayed to both 
compared algorithms as input. Only the time necessary to QP problem solving was measured. The 
results are given in table 1. 

Table 1: TIME NEEDED TO THE QP PROBLEM SOLVING IN CASE INITIAL FEASIBLE POINT IS 
CALCULATED SEPARATELY 

 Described QP QP from MATLAB opt. toolbox 
1 0.000822 0.003126 
2 0.000602 0.005045 
3 0.000720 0.005052 
4 0.000608 0.003513 

Average 0.000688 0.004184 

In the second case was measured time needed for the whole calculation (QP algorithm 
execution and initial feasible point calculation). In this case wasn’t the initial feasible point handed 
over to the QP algorithm from MATLAB optimization toolbox. The results follow in table 2. 
  

                                                             
1 Some MPC algorithms don’t find an initial feasible point in every QP algorithm calling because result from the 
last QP algorithm is used as input for the following calling and thus is feasible. It doesn’t have to hold every 
time because constraints can be change in every sample time. 



Table 2: TIME NEEDED TO THE QP PROBLEM SOLVING IN CASE CALCULATION OF INITIAL FEASIBLE 
POINT IS INCLUDED TO THE MEASURED TIME 

 Described QP QP from MATLAB opt. toolbox 
1 0.001009 0.005248 
2 0.001010 0.004657 
3 0.001162 0.004126 
4 0.001004 0.004637 

Average 0.001046 0.004667 

The realized QP algorithm testing was conducted during the algorithm comparing, because both 
algorithms give the same results. The code used by the QP algorithms comparing is attached also on 
CD. 

4 Conclusion 
The algorithm described in this paper doesn’t offer so many variants of using compare to QP 

algorithm from MATLAB optimization toolbox, but it can faster solve a QP problem, which can be in 
practice important. The described algorithm approximately six times faster was in the case the initial 
feasible point calculation time wasn’t included to the measuring. In the second case was more than 
four times faster. 
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