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Abstract 

In the article, a mechatronic system composed of a slender beam, subjected to a static 
magnetic force, is analyzed.  Dependence of the magnetic force on the air gap width d, 
which is a function of the beam deflection, is described by the inverse square law 1/d2. 
Action of the magnetic force causes bending of the beam. If its intensity surpasses 
certain limit the beam is buckled. The mathematical model of the magnetic force can 
be approximated by a polynomial expansion. It is of interest to analyse the nature of 
bending and limits of the linear approximation, as well as the limits leading to the 
buckled state in a generalised way. The cubic algebraic equation, describing the static 
equilibrium condition, is derived and solved in exact and in an approximate way 
using MATLAB® environment. The difference between exact and approximate 
solution is described, taking into consideration the physical background. Practical 
conclusions on use of the approximate solution are drawn in the conclusion.  

 

1 Introduction 
In some mechatronic applications a slender beam or plate, rigidly fixed on its boundaries is 

subjected to a magnetic force, generated between an energised solenoid with a ferromagnetic core and 
a ferromagnetic yoke fixed to the beam (Fig. 1(a)) [1-3]. Dependence of the force on the distance d, 
Fig. 1 (b), is described by the inverse square law: 1/d2.   

The contribution presents discussion on evaluation of static deflection of such a mechatronic 
system, exposed to static magnetic force FM. As shown in Fig. 2, the magnetic force is acting in the 
middle of the beam of length L and induces a deflection zmax. If intensity of the magneto-static force 
FM surpasses certain limit the beam is buckled and attracted to the end-stops (see e.g. [1], p. 7-10).    

  
(a) (b) 

Figure 1: (a) scheme of an electromagnet; (b) Diagram of magnetic force FM vs. displacement d [4] 

2  Mathematical Model of the Equilibrium State 
Let us consider a long slender beam, rigidly fixed on its both ends to the supports, with a yoke 

of mass m located in the midpoint (Fig. 2). Let assume, that the length Lm of the yoke is negligible in 
respect to the overall beam length L (i.e. Lm << L). Then the deflection, zmax at the beam midpoint due 
to the magnetic force FM acting downward and localized at midpoint of the beam is [5]:  
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Figure 2: Schematics of the clamped-clamped beam with electromagnet  

(flux line is denoted dashed). 

where Eb is the modulus of elasticity (Young’s module) of the beam material and Ib is the second 
moment of inertia of the beam. For a beam with a rectangular cross-section, Ib = 1/12⋅bh3, where b is 
the width of the beam and h is its height. This can be expressed as FM = zmax⋅kef, where the theoretical 
value of the effective (lumped) stiffness kef of the clamped-clamped slender beam loaded at the 
midpoint is given in technical handbooks (e.g. [5]) as kef = 192⋅(EbIb)/L3. 

Energizing the electromagnet with a steady state (DC) current the magnitude of magneto-static 
force FM can be described by a scalar equation [1-4]:  
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The magnetic flux line is crossing twice the air gap as shown in Fig. 1 (a); µ0 is the permeability of air 
and lΦ is the flux line length in the ferromagnetic material of the relative permeability µr. In following 
the equivalent magnetic flux line length in the air, r2

1
Fe µΦ= ld  will be used. All parameters are either 

known from vendor’s data, were measured experimentally or calculated from set-up geometry [2, 4].  

The state, when the magnetic force FM(d, I) is in static equilibrium with the elastic force due to 
the beam deflection zmax⋅kef is described by Eq. (3). From the set-up geometry (Fig. 2) follows: 
zmax = d0 – d, where d0 is the initial distance between electromagnet and the beam in de-energised state:
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Let’s introduce a non-dimensional air gap width α:  00 )( ddd −=α .     (4) 
From physical point of view, the quantity α is non-negative and cannot be larger than one. 

If α = 1, beam is fully attracted by the electromagnet and adheres to its poles.  

Introducing α into Eq. (3) and using Eq. (2), the equilibrium equation is (where δM = dFe/d0):  
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Note, that material of electromagnet is assumed to be linear (no saturation) and neither fringing effects 
nor hysteretic effects are considered for simplicity. 

Eq. (5) can be re-written as follows: 
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where the constant KM represents the parameters of the electromagnet at the initial position d0 of the 
de-energised system.  
 



3 Solution of the Equilibrium Equation 
The Eq. (6) can be solved for variable α(I) by an approximate approach using linear 

approximation, or in the exact way, applying analytical or numerical tools.  

3.1 Approximate Solution 
Let us assume that the condition α << 1 is fulfilled. The denominator of the right hand side of 

Eq. (6) can be approximated by a McLaurin’s series [6, 7]: 
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Just the first two terms of the expansion are considered, i.e. the linear approximation is used. After 
some algebra, noting that 0 ≤ α  ≤ 1, formula for approximate calculation of α’ emerges: 
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3.2 Exact Solution  
Rewriting Eq. (6), a cubic equation is obtained: 
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The solution of Eq. (9b) calls for the use of Cardano’s formulas for evaluation of cubic 
equations [6, 7] or rely on numerical solvers of algebraic equations, embedded in simulation 
programming environment, e.g. MATLAB. The numerical solution leads generally to three different 
complex roots. A detailed analysis according to [6, 7] revealed, that in analogy to the quadratic 
equation there is a cubic discriminator D3, furnishing for D3 > 0 three real roots. This is the case here. 
By further analysis two pairs of special real solutions of this cubic equation were found:  

- a pair for α = 0 and α = (1 + δM) > 1, which is a result for I = 0; 
- a pair for α = (1 + δM)/3, α = 4(1 + δM)/3, which results if I attains a specific value Icrit: 
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Note, that the critical current Icrit is determined by the beam stiffness kef, the electromagnetic 
properties KM, and the ratio δM = dFe/d0. This ratio can be interpreted as the ratio of the magnetic 
circuit equivalent flux line length in the air to the initial air gap width d0. The value α = 4(1 + δM)/3 
corresponds to a triple real root at D3 = 0 (Fig. 3). For I > Icrit there is only a single real root and two 
complex conjugate roots. 

3.3 Comparison of Approximate and Exact Solution  
Let us introduce a normalized current IN, i.e. the current normalized by the value of critical 

current, IN = I/Icrit. Then Eqs. (9) can be re-formulated in a following way: 
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The numerical evaluation of Eq. (11b) was done in MATLAB® environment. For calculation the 
exact solutions α the MATLAB® function ‘roots’ is applied, returning a complex three element vector 
for each IN value, incremented in steps of the order of 2×10-3. Then the roots for each IN value are 
ordered in ascending order, depending on the number of non-zero real roots. The results are finally 
plotted in the form of line graphs.  



The dependence of the exact solution α in respect of the normalised current IN is plotted in 
Fig. 3. Note, that this is not a plot of a function, because for any positive value of IN < 1 three mutually 
different values are possible, because D3 > 0. This is just the graphical representation of the course of 
real roots of the cubic Eq. (11b) without any relation to the underlying physical background. 
Moreover, the course of approximate solution α’ (Eq. (11a)) is plotted in dashed, too. Note, that the 
approximate solution α’ is valid under the above assumption of α << 1. 

 
 Figure 3: Courses of the exact solution α (thick line) and the approximate solution α’ (thin line) 
for dFe = 0.15 mm and d0 = 0.5 mm (red), d0 = 1.0 mm (blue); solution for D3 = 0 are highlighted  

3.4 Physical Interpretation of the Results 
As stated above, the physically feasible values of numerical solution of the cubic Eq. (11b) are 

bound to the interval [0, 1] (white area in Fig. 3); hence the solutions above the bold limit for 
α = 1(in the gray area) have no physical meaning (the beam would have to move within the 
electromagnetic core!). So, only values of α ≤ 1 are meaningful. 
i. The dashed course commencing at α = 1 is also not realistic either, because this would assume 

that the elastic beam was buckled prior to energising the field. Hence, this branch has no 
physical meaning in this case either. 

ii. The physically plausible course is the lowest curve, starting at zero and reaching for  I = Icrit the 
value of α = (1 + δM)/3 (Fig. 3). However, for the value Icrit (IN = 1) two different solutions do 
exist: α = (1 + δM)/3 and α = 4(1 + δM)/3. This can by interpreted as the limit of stability of the 
physical system: at the critical current the beam buckles from the value of α = (1 + δM)/3 to 
α=1 in a jump.  

iii. If the current would revert from a value of I > Icrit the beam would follow the same trajectory, 
i.e. as soon as the value of IN drops below unity value the beam, firstly adhering to the magnet 
core, would attain (after extinction of the transient phenomenon) a position corresponding to the 
α = (1 + δM)/3.  

The critical value of the magnetising current I, Icrit is crucial for discrimination between bending 
and buckling of the elastic slender beam rigidly fixed on both ends. Moreover, the maximal 
displacement due to bending prior to transition to the buckled state, in the view of the substitution 
introduced by Eq. (6) is: 
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which, as seen, depends on the ratio δM = dFe/d0 and the de-energised distance d0. 

Next, the applicability of the linear approximation has to be assessed. From Fig. 3 it is seen that 
when IN < 0.80 there is no visible difference between the exact solution and the approximate solution. 
To be more precise, for the de-energised air-gap width d0 = 1.0 mm and corresponding δM = 0.15 for 



IN = 0.80 the difference between the exact solution α = 0.141 and the approximate solution α’ = 0.135 
is some -5 %, i.e. still technically acceptable. For IN = 0.50 the difference between the exact solution 
α = 0.0463 and the approximate one α’ = 0.0460 is less than -0.6 %. So, these are the practical limits 
of applicability of the approximate solution. 

4 Comparison of Experimental and Simulation Results 
The authors have experience with an experimental set-up (Fig. 4), which consists of an 

aluminium beam (i.e. non-ferromagnetic material) of rectangular cross-section. The beam is 
thoroughly fixed to robust supports to ensure clamped boundary conditions. In the middle of the beam 
a variable dead load is mounted. From below the yoke, matched to the electromagnet, is fixed. The 
electromagnet used is of industrial type, rated at 700 mA reaching maximum holding force at zero air 
gap of 3.0 kN. The force-distance characteristics according to Eq. (2) were measured for various 
current intensities experimentally [4] (Fig. 1(b)). From electromagnet vendor’s data sheet and by 
measuring relevant properties all necessary dimensions, required in simulations, were obtained [4]. 

  
Figure 4: Schematics of the measurement setup Figure 5: Comparison of simulated (solid) and 

measured (dashed with discrete points) courses 

A dial displacement indicator was used for measuring the beam static deflection. In Fig. 5, two 
different distances d0 in de-energised condition were pre-set, namely, 0.75 mm, 0.85 mm. In each of 
these two cases the beam was loaded by a different dead mass inclusive yoke (in turn 51.7 kg, 
18.7 kg). The electromagnet was driven from a regulated DC source, while the magnetising current I 
was varied in steps between zero and 0.5 A. The measurements were conducted in such way, that the 
limit of Eq. (11) was not surpassed. The experimental results shown in Fig. 5 (after [4]) are compared 
to the theoretical curves for the exact solution of the Eq. (11b). Moreover, the effective beam stiffness 
kef was tuned experimentally and slightly varies on dead mass because of non-ideal boundary 
conditions. The limiting currents, calculated according to Eq. (10), were 0.39 A and 0.46 A, 
respectively. As can be seen from Fig. 5, this corresponds well with the measured courses. 

Note the observed attempt to buckling in the experimental data for d0 = 0.75 mm, underlining 
the correctness of the exact approach. Note also the good agreement of the experimental data and the 
exact solution. 
 

5 Practical Conclusions 
The practical lesson from this study is following: 

• There is a critical current Icrit, whose magnitude is given by Eq. (10). If the solenoid is energised 
by a larger current the elastic beam buckles and is permanently attracted to the electromagnet. 

• This happens at approximately one third of the static air gap width. More precisely this margin is 
given by Eq. (12) and depends on the ratio of the equivalent flux line length in the air of the 
magnetic circuit to the initial air gap width. 

• The description of the elastic and magnetic forces equilibrium by an approximate description 
(linearised form) of the magnetic force (Eq. (8) or (11a)) can be used in the current range of 
approximately 80 % of the critical current.  
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