COMPARISON OF EULER'S- AND TAYLOR'S EXPANSION METHODS FOR NUMERICAL SOLUTION OF NON-LINEAR SYSTEM OF DIFFERENTIAL EQUATION

Branislav Dobrucký, Mariana Beňová, Daniela Gombárska

Faculty of Electrical Engineering, University of Žilina, Slovak Republic

Abstract

The paper deals with Euler's- and Taylor's expansion methods for next numerical solution in Matlab environment. There are many applications in technical practise described and modelled by linear or non-linear differential equation (DE) systems. A fictitious exciting functions method makes possible numerical solution of this DE system with non-stationary matrices. The solution of examples with non-linear inductance is presented as well in the paper.

1 ODE System in Matrix State-Space Form

There are many applications in technical practise modelled linear or non-linear differential equation (DE) systems. Let's have system of two first order ODEs (which can be given/rewritten as one ODE of the 2^{nd} order)

$$\frac{\mathrm{d}x_1}{\mathrm{d}t} - a_{11}x_1 - a_{12}x_2 = b_{11}u_1, \qquad \frac{\mathrm{d}x_2}{\mathrm{d}t} - a_{21}x_1 - a_{22}x_2 = b_{22}.$$

The system can be also presented in matrix state-space form

$$\frac{\mathrm{d}\bar{x}}{\mathrm{d}t} = \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix} \bar{x} + \begin{pmatrix} b_{11} & b_{12} \\ b_{21} & b_{22} \end{pmatrix} \bar{u},$$
(1)

where

$$A = \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix}, B = \begin{pmatrix} b_{11} & b_{12} \\ b_{21} & b_{22} \end{pmatrix} \text{ are system- and transition matrices,}$$

$$\bar{x} = \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} \text{ and } \bar{u} = \begin{pmatrix} u_1 \\ u_2 \end{pmatrix} \text{ are state (state-variables)- and exciting vectors, respectively.}$$

Such a linear system of ODE can be solved analytically and/or also numerically (e.g. by Euler explicit method) [1], [2], [4]. If the matrix elements are non-stationary (e.g. time dependent ones) then system of equations cannot be solved by the methods using the matrix operation as e.g. Euler implicit or Taylor expansion methods.

Principle of Fictitious Exciting Functions Method 2

If a_{11} and a_{12} elements of **A** matrix are non-stationary (e.g. time dependent ones) and b_{12} , b_{21} , b_{22} and $u_2 = 0$ then system of Eq. (1) can be rearranged into following form [3]

$$\frac{\mathrm{d}\bar{x}}{\mathrm{d}t} = \begin{pmatrix} 0 & 0\\ a_{21} & a_{22} \end{pmatrix} \bar{x} + \begin{pmatrix} b_{11} & 1 & 1\\ 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} a_1\\ a_{11}x_1\\ a_{12}x_2 \end{pmatrix},$$

where $\bar{u}_f = (u_1; a_{11}x_1; a_{12}x_2)^T$ is fictitious exciting vector and $a_{11}x_1; a_{12}x_2$ are fictitious exciting functions,

$$\boldsymbol{A}_{f} = \begin{pmatrix} 0 & 0 \\ a_{21} & a_{22} \end{pmatrix}$$
 is modified (fictitious) state matrix,
$$\boldsymbol{B}_{f} = \begin{pmatrix} b_{11} & 1 & 1 \\ 0 & 0 & 0 \end{pmatrix}$$
 is modified (fictitious) transition matrix of the system.

Let's consider Euler's- and Taylor's expansion methods for numerical solution of Eq. (.). We obtain

a) Euler explicit method yields

$$\bar{x}_{n+1} = (\boldsymbol{E} + h\boldsymbol{A}_f)\bar{x}_n + h\boldsymbol{B}_f\bar{u}_{fn}$$

where h is integration step;

E is unity matrix.

That method is sensitive on integration step. Stability condition is that h should be smaller than $2/|Re\{\lambda_i\}|_{max}$ [4].

b) Euler implicit method yields

$$\bar{x}_{n+1} = \left(\boldsymbol{E} - h\boldsymbol{A}_f\right)^{-1} \left[\bar{x}_n + h\boldsymbol{B}_f \bar{u}_{fn}\right]$$

where $F = (E - hA_f)^{-1}$ is fundamental matrix of the system. Contrary to above this method is for negative real part of eigenvalues absolutely stable (A-stabile) for any positive step h [4].

c) Taylor expansion yields [4]

$$F = \exp(Ah) = \sum_{n=0}^{\infty} \frac{A^n h^n}{n!}$$

and similarly

$$F_{n+1} = \sum_{n=0}^{\infty} \frac{A^{n+1}h^{n+1}}{(n+1)!}; \quad G = A^{-1}F_{n+1}B$$

So, choosing appropriated number of series member n one can obtain

$$\bar{x}_{n+1} = F\bar{x}_n + G\bar{u}_{fn}$$

The method is similarly to Euler implicit above also A-stabile one.

All discrete equations carried-out by Euler explicit-, implicit- and Taylor expansion methods are easily solvable by numerical computing because their modified (fictitious) matrices are stationary ones.

3 Application of all three method for 2nd order electric circuit solving

 2^{nd} order electric circuit with non-linear element L_{non} is depicted in Fig. 1

Figure 1: 2^{nd} order electric circuit with non-linear element $L_{non} = f(i_L)$

The circuit can be described by two first order ODEs system as follow

4:

$$\frac{\mathrm{d} u_L}{\mathrm{d} t} - a_{11}i_L - a_{12}u_C = b_{11}u_1$$
$$\frac{\mathrm{d} u_C}{\mathrm{d} t} - a_{21}i_L - a_{22}u_C = 0$$
where: $a_{11} = -\frac{r_L}{L_{non}} = -\frac{1}{\tau_1}, \ a_{12} = -b_{11} = -\frac{1}{L_{non}}, \ a_{21} = \frac{1}{c}, \ a_{22} = -\left(\frac{1}{r_c} + \frac{1}{R}\right)\frac{1}{c} = -\frac{1}{\tau_2}$

The dynamical inductance L_{non} is non-linear function of the inductor current

 $L_{non} = \mathbf{f}(i_L)$

The functional dependency can be obtained directly from B-H characteristic of magnetic core of the inductor [6], [7], by measurement or using various functional linearized substitutions. For SIFERRIT U60 material [6] is that dependency shown in Fig. 2 with other functional linearized dependencies.

Figure 2: Non-linear dependency $L_{non} = f(i_L)$ for U 60 material [6] (a) and other functional linearized dependencies (b) in p.u. where x: i_L and y: L_{non}

So, $L_{non} = f(i_L)$ can be expressed by some different models:

Linearized model I.: if $i_L < I_{Lnom}$ then $L_{non} = L_{lin}$ else

$$L_{non} = (L_{lin} - L_{\infty}) \exp\left[-\frac{1}{\tau} \cdot (i_L - I_{Llin})\right] + L_{\infty},$$

where $L_{\infty} = 0.5 L_{lin}$ as given in Fig. 2. This model has been used for simulation experiments shown in the F Fig. 3a,b,c. Other models are referred in [5].

Figure 3: Time dependences of input voltage and state variables i_L , u_C and L_{non} of the circuit considering $L_{non} = f(i_L)$:

- a) Euler explicit method
- b) Euler implicit method
- c) Taylor's expansion

Parameters: $L_{\text{lin}} = 0.5$; $C = 2/\omega^2$; $R = 2.5 \Omega$; r1=r2=1e-2; U=2; $1/\tau = 2.0$; I11in = 0.5; h=2.5e-2; T=1; $\omega = 2\pi/T$; Comparison of all three computing methods is shown in next Fig. 4a,b.

Figure 4: Time dependences of input voltage and state variables i_L , u_C and L_{non} at different ratio of h=0.025 s a) and h=0.1 s b)

The average value of input voltage (regarding to sinusoidal shape) is

$$U_{1AV} = \frac{2}{\pi}U = \frac{2}{\pi}2 = 1.2732 \text{ V}$$

Then average value of the input (= inductor) current is in steady-state

$$I_{1AV} = \frac{U_{AV}}{r_L + R} = \frac{2}{0.01 + 2.5} = 0.5052 \text{ A},$$

which is taken as nominal one (I_{Lnom}) and therefore is the inductor current compared with that value at non-linear inductor model.

The average value of output voltage is then

$$U_{2AV} = U_{1AV} - r_L \cdot I_{1AV} = \frac{2}{\pi}U - r_L \cdot \frac{U_{AV}}{r_L + R} = \frac{2}{\pi}2 - 0.01\frac{2}{0.01 + 2.5} = 1.2682 \text{ V}.$$

Taking into account different ratio of the I_{Llin} and I_{Lnom} then for 100-, 80- and 60 % one obtains the time waveforms as shown in Fig. 5a,b,c

Figure 5: Time dependences of input voltage and state variables $i_{\rm L}$, $u_{\rm C}$ and $L_{\rm non}$ at different ratio of I_{Llin}/I_{Lnom} equal 1.0 a), 0.8 b) and 0.6 c)

4 Conclusion, discussion

Comparison of Euler's- and Taylor's expansion methods has been given using computation of the 2^{nd} order non-linear ODE system

The following conclusion resulting from the simulation experiments given in Figs. 3a,b,c, 4a,b and 5a,b,c:

Computational results of non-linear ODE system solving by three independent methods: Euler explicit/ and implicit ones and Taylor's expansion are very similar at sufficiently small integration step smaller the 0.025 s.

Euler explicit method shows rather big error at integration step h=0.1 s (Fig. 4b).

Given non-linearity of the inductor $L=f(i_L)$ causes the increasing of the input current (up to 5 %) and output voltage (up to 10 %) at different ratio of I_{Llin}/I_{Lnom} (1.0; 0.8; 0.6), Figs. 5a,b,c.

Acknowledgement

The authors wish to thank for the financial support to the VEGA Agency for the project No. 1/0470/09.

References

- J. Skrášek, Z.Tichý, Fundamentals of Applied Mathematics II (in Czech). SNTL Publisher, Prague (CZ), 1986.
- [2] D. Mayer, B. Ulrych: Numerical Analysis of Non-Linear Electrical Circuits by State Variables Method (in Czech). Electrical Review (Elektrotechnický obzor), Vol. 65, 1976, No. 1, pp. 30-38.
- [3] L Nevařil: State Variables on HP 9830 Desk Computer (in Czech). Research Report of EVPU Research Institute, N. Dubnica (SK), No. V-0516, 1978
- [4] H. Mann: Using Computer for Electrical Designs (in Czech). SNTL/ALFA Publisher, Prague (CZ)/Bratislava (SK), 1984.
- [5] M. Beňová, B. Dobrucký, D. Gombárska, R. Radvan: Using Fictitious Exciting Functions Method for Non-Linear Differential Equation System Solving. e-Proc. of ICPM'11 Int'l Conf. on Presentation of Mathematics, Liberec (CZ), pp. CD-ROM, Nov 2011.
- [6] : Ferrites Soft Magnetic Materials. Siemens AG Data Book, Muenchen (DE), 1979 /80, p. 23, ISBN X-X.
- [7] R. Radvan, Dobrucký, B., Frivaldský, M., Rafajdus, P.: Modelling and Design of HF 200 kHz Transformers for Hard- and Soft- Switching Application. Electronics and Electrical Engineering, Vol. 110, Nr. 4, pp. 7-12, 2011.
- [8] B. Dobrucký, M. Marčoková, M. Beňová, M. Lusková: Using Theory of Series for Distortion Determination of Non-Harmonic Quantities of Power Electronic Systems. Proc. of MME'10 Int'1 Symposium on Mathematical Methods in Engineering, Coimbra (PT), pp. 57-66, Oct 2010.

Branislav Dobrucký

Department of Mechatronics and Electronics, <u>dobrucky@fel.uniza.sk</u>, phone +421 41 513 1602

Mariana Beňová

Department of Electromagnetic and Biomedical Engineering, <u>benova@fel.uniza.sk</u>, phone +421 41 513 5090

Daniela Gombárska

Department of Electromagnetic and Biomedical Engineering, *gombarska@fel.uniza.sk*, phone +421 41 513 5090