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Abstract

Well known logistic regression and the other binary response models can be used in
the area of statistics, biomedical data analysis and artificial intelligence. Beginning
with basic properties of proposed model, we use likelihood ratio testing as a tool for
the pruning of complete model to produce the best sub-model. We are focused to
optimum and automated pruning which is an alternative to traditional stepwise
logistic regression. The general methodology of logistic regression with optimum
pruning was developed together with a library of functions in the Matlab
environment. The library was used to the analysis of neuropsychological and
biomedical data related to the systematic research of resistant depressions. The aim
of the paper isin the selection of optimum sub-model (set of patient properties) which
will help with the decision whether the patient has resistant or non-resistant form of
the depression.

1 Introduction

There are many statistical methods which seem talb® powerful tools in the area of artificial
intelligence (cluster analysis, linear and nonlmesgression, kernel methods etc.). One of them is
logistic regression [4] and its generalization beaby response index model [3]. The nonlinearités
these models are very similar to models of artificeurons. So, the logistic regression and thetes

of sub-models can be useful in designing of muylataperceptron (MLP) networks. The model and
sub-model difference can be useful for the decjsidmether given input or a group of inputs plays
significant role in hierarchical decision processide ANN. Thus, statistical testing based on
likelihood ratio (LR) can help to eliminate reduntaveights (ANN pruning) or to generate hidden
layer of MLP.

2 Binary ResponseIndex Model
We suppose a model [3] withreal inputs< and single binary outpytin the form

y=h(x"B+e) ()
where

1 for z>0
i) = {O for z<0 @)

is Heaviside’s unit step functior, 8 [ R™ Xo = 1, eis a continuous random variable with positive

and symmetric probability density functionZg@round zero, of course. Its cumulative distribiti
function is

G(2) = [g(u)du 3

So, the outpuy is also of stochastic nature and it can be desdnifa probability
p(x) =prob(y=1| x) = prob(x "B +e>0) =probe>-x"B8) =1-G(-x'B) =G(x'B) (4)



which is well known formula [3, 4] fobinary modelrelated tdogistic regressionThere is necessary
to satisfy 0 < Gf) <1 for all real arguments Fortunately, it implies from g] > 0 everywhere, which
was declared above.

3 Special Casesof Binary Model
Binary model was first published by Bliss [1] in3®asprobit modelwith nonlinearity

z 2
J%[ jexp{—uszu (5)

and corresponding density function of standard mabdistribution as

9(2) :J%nex{_éJ (6)

G(=9(9)=

Lately in 1944, Berkson [2] publishéagit model(logistic regression) with nonlinearity

1
G(z2)=————— 7
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and corresponding density function of logistic wgition as
exptz
PC2) ®)
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(1+expE2))
This model is frequently used in many applicatiofise logit model approaches its asymptotes less
rapidly then probit one. The other models are agsasible to use. The density of Cauchy (t
distribution

= 9
9@ = ©)
generates the nonlinearity
G(2) = ; + 71[ arctanz (10)

with several amazing properties corresponding toféail effect of Cauchy distribution. The variety
of nonlinear characteristics can help us to chandgnary model and its parameters with the best
possible quality of fitting.

4 Parameter Estimation

The estimation of model parameters is frequentlyopmed via maximization of likelihood function
or its logarithm respectively. Resulting point este (if exists) has a very good asymptotic pragert
[3, 4]. LetN be number of observations ang, (y,) be individual observation fdc= 1, ...,N. Thus,
the density o¥ for individualxy is

i(ylx..B) =[c B i-cx[B)]" (11)

Thelogarithmic likelihood functiorover all observations is defined as

L(B) = (v, 0g G(x]B) + - y,)log- G(x  8)) (12



The point estimaté of parameter vector is obtainable via maximizatiérobjective function L on
closed convex domaiD as

b=80 argma L(B) (13)
The existence but not unigueness of the estilmaseguaranteed in this case. Repladhgy opened

set R" will cause problems when the observations arerabfi@| which is ideal case for classifier
tuning but not for parameter estimation. The anslgsasymptotic variance begins with matrix

- N g(Xka)XkXII
V ;‘G(xlb)(l—e(x[b)) (14)

When the matridl is regular, it is also positive definite and tisgraptotic variance of estimaleis

Avar(b)=V =U" (15)
The asymptotic standard error of estimate

Astd() =s =diagl )"? (16)
and corresponding approximate 95% CI (confidentaral) is

BO(b-196s,b +196s) (17)

The confidence interval is rather useful for fimaport then for significance testing due to its
sensitivity to singularity of matrik.

5 Hypothesis Testing

There are many approaches to binary model testing. of them is likelihood ratio (LR) test. It is
based on the comparison of given model and itssodels. Let

r=@r,..r,) o{oy™ (18)

be selection vectgrwhich describes, whether adequate componenteabrx will be used in the
model. The vector decomposes the vectorto two parts: active input vector JR**and eliminated

input vectorv OR®. Here, K is the number of real inputs (excluding), Q is the number of
eliminated inputsk, Q O N, K + Q = m. Analogical decomposition of parameter vecf®rcomes to

vectorsy OR**™, nORQ.

WhenQ = 0, therK= m and we obtairomplete modeds

p(x)=G(x"B)=Gu'p+v'n) (19)
with optimum log-likelihood valué comp:

Anyway, Q > 0, therK < mand we obtaimestricted modeas sub-model in the form

pu) =G 'p) (20)
with optimum log-likelihood valug e

The traditionallikelihood ratio test(LR-test) is about hypothesi#l,:n =0against alternative
H,:n#0.

The testing criterion

LR=2(L (1)

compl - Lrestr)

has limiting distribution)(é with Q degrees of freedom. The adequatg.is directly obtained as



=1-F,(LR) (22)

pvalue

where k is cumulative distribution function of chi-squargidtribution.

The comparison of the model and its sub-model Ratést brings a view on the significance of the
model and its parameters. There are two usefukpéat cases.

WhenK = 0, themQ = mand we obtaimonstant modeds
pU) =G(y) = P, (23)

Maximum likelihood estimation procedure (13) corteetrivial estimate

l N

Pe=3D Vi (24)
N i

Log-likelihood value of this constant model is

Leonse = N(p.log p, + (L— p,)logL- p,)) (25)

Comparing complete model with constant one, wengaasure the model significance (its quality) via
probability

pO = 1_ Fm (2( I‘compl - Lconst)) (26)

Lower value ofpy indicates the higher significance of given completodel and various models can
be ordered according 1.

In the second case, we compare the complete madet aub-model with eliminatdd' input, where
k> 0. So, we havk = m—1,Q = 1 and adequate log-likelihood value can be d=hatlL,. We can
easily measure the significancelfinput, in the meaning of hypothesis:H3 = 0 against alternative
Ha: Gc# 0, via probability

pk =1- F:L(Z( I-compl - Lk )) (27)

Stepwise strategy of parameter elimination is feedly used to obtain the model, which every
parameter is significant in the meaningpek «, together withpy < a. If the model is not unique, we
prefer the model with minimum value pf.

6 Biomedical Application

The theory of optimum logistics sub-model came e tealization of library in the Matlab
environment. Then we used the library to the amalgEbiomedical data about resistant depressions.
The data consists of 114 patients with 93 propertiehree properties are output ones (positive
response to treatment of two weeks, four weekstatad response). Seven properties are based on
EEG cordance measurement which is very efficiedicator for responder-resistant decision. The rest
of 83 properties are basic, biochemical, psychalgind psychiatric characteristics of patientse Th
set of 114 patients consists of 89 total respondats 25 resistants and it was analyzed via logistic
regression with optimum pruning technique of thetb&ib-model finding. The best sub-model is
mainly oriented to the cordance based propertidsadihbe used for patient classification.

7 Conclusion

Logistic regression was employed to form the babtraodels in the case of logistic regression. The
general methodology of logistic regression withimpim pruning was developed together with a
library of functions in the Matlab environment. THirary was used to the analysis of
neuropsychological and biomedical data relatech&o dystematic research of resistant depressions.
The research will help with the decision whether platient has resistant or non-resistant form ef th
depression.
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