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Abstract 

Well known logistic regression and the other binary response models can be used in 
the area of statistics, biomedical data analysis and artificial intelligence. Beginning 
with basic properties of proposed model, we use likelihood ratio testing as a tool for 
the pruning of complete model to produce the best sub-model. We are focused to 
optimum and automated pruning which is an alternative to traditional stepwise 
logistic regression. The general methodology of logistic regression with optimum 
pruning was developed together with a library of functions in the Matlab 
environment. The library was used to the analysis of neuropsychological and 
biomedical data related to the systematic research of resistant depressions. The aim 
of the paper is in the selection of optimum sub-model (set of patient properties) which 
will help with the decision whether the patient has resistant or non-resistant form of 
the depression. 

1   Introduction 

There are many statistical methods which seem to be also powerful tools in the area of artificial 
intelligence (cluster analysis, linear and nonlinear regression, kernel methods etc.). One of them is 
logistic regression [4] and its generalization to binary response index model [3]. The nonlinearities of 
these models are very similar to models of artificial neurons. So, the logistic regression and the testing 
of sub-models can be useful in designing of multilayer perceptron (MLP) networks. The model and 
sub-model difference can be useful for the decision, whether given input or a group of inputs plays 
significant role in hierarchical decision process inside ANN. Thus, statistical testing based on 
likelihood ratio (LR) can help to eliminate redundant weights (ANN pruning) or to generate hidden 
layer of MLP. 

 

2   Binary Response Index Model 

We suppose a model [3] with m real inputs x and single binary output y in the form 
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is Heaviside’s unit step function, 1, +∈ mRβx , x0 = 1, e is a continuous random variable with positive 
and symmetric probability density function g(z) around zero, of course. Its cumulative distribution 
function is 
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So, the output y is also of stochastic nature and it can be described via probability 
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which is well known formula [3, 4] for binary model related to logistic regression. There is necessary 
to satisfy 0 < G(z) <1 for all real arguments z. Fortunately, it implies from g(z) > 0 everywhere, which 
was declared above. 

 

3   Special Cases of Binary Model 

Binary model was first published by Bliss [1] in 1934 as probit model with nonlinearity 
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and corresponding density function of standard normal distribution as 
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Lately in 1944, Berkson [2] published logit model (logistic regression) with nonlinearity 
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and corresponding density function of logistic distribution as 
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This model is frequently used in many applications. The logit model approaches its asymptotes less 
rapidly then probit one. The other models are also possible to use. The density of Cauchy (t1) 
distribution 
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generates the nonlinearity 

zz arctan
π

1
2
1

)G( +=                     (10) 

with several amazing properties corresponding to heavy tail effect of Cauchy distribution. The variety 
of nonlinear characteristics can help us to choose a binary model and its parameters with the best 
possible quality of fitting. 

 

4   Parameter Estimation 

The estimation of model parameters is frequently performed via maximization of likelihood function 
or its logarithm respectively. Resulting point estimate (if exists) has a very good asymptotic properties 
[3, 4]. Let N be number of observations and (xk, yk) be individual observation for k = 1, …, N. Thus, 
the density of y for individual xk is 
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The logarithmic likelihood function over all observations is defined as 
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The point estimate b of parameter vector is obtainable via maximization of objective function L on 
closed convex domain D as 
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The existence but not uniqueness of the estimate b is guaranteed in this case. Replacing D by opened 
set Rn will cause problems when the observations are separable, which is ideal case for classifier 
tuning but not for parameter estimation. The analysis of asymptotic variance begins with matrix 
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When the matrix U is regular, it is also positive definite and the asymptotic variance of estimate b is 
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The asymptotic standard error of estimate b is 
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and corresponding approximate 95% CI (confidence interval) is 
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The confidence interval is rather useful for final report then for significance testing due to its 
sensitivity to singularity of matrix U. 

 

5   Hypothesis Testing 

There are many approaches to binary model testing. One of them is likelihood ratio (LR) test. It is 
based on the comparison of given model and its sub-models. Let 

1T
1 }1,0{),...,,1( +∈= m

mrrr                      (18) 

be selection vector, which describes, whether adequate components of vector x will be used in the 

model. The vector r decomposes the vector x to two parts: active input vector 1+∈ KRu and eliminated 

input vector QR∈v . Here, K is the number of real inputs (excluding x0), Q is the number of 
eliminated inputs, K, Q ∈ N0, K + Q = m. Analogical decomposition of parameter vector β  comes to 

vectors 1+∈ KRµ , QR∈η . 

When Q = 0, then K= m and we obtain complete model as 

)G()G()p( TTT ηvµuβxx +==                     (19) 

with optimum log-likelihood value Lcompl. 

Anyway, Q > 0, then K < m and we obtain restricted model as sub-model in the form 
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with optimum log-likelihood value Lrestr. 

The traditional likelihood ratio test (LR-test) is about hypothesis 0=η:H0 against alternative 

0≠η:HA . 

The testing criterion 
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has limiting distribution 2
Qχ with Q degrees of freedom. The adequate pvalue is directly obtained as 
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where FQ is cumulative distribution function of chi-squared distribution. 

The comparison of the model and its sub-model via LR-test brings a view on the significance of the 
model and its parameters. There are two useful particular cases. 

When K = 0, then Q = m and we obtain constant model as 
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Maximum likelihood estimation procedure (13) comes to trivial estimate 
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Log-likelihood value of this constant model is 
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Comparing complete model with constant one, we can measure the model significance (its quality) via 
probability 
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Lower value of p0 indicates the higher significance of given complete model and various models can 
be ordered according to p0. 

In the second case, we compare the complete model and a sub-model with eliminated kth input, where 
k > 0. So, we have K = m – 1, Q = 1 and adequate log-likelihood value can be denoted as Lk. We can 
easily measure the significance of kth input, in the meaning of hypothesis H0 : βk = 0 against alternative 
HA : βk ≠ 0, via probability 
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Stepwise strategy of parameter elimination is frequently used to obtain the model, which every 
parameter is significant in the meaning of pk < α, together with p0 < α. If the model is not unique, we 
prefer the model with minimum value of p0.  

 

6   Biomedical Application 

The theory of optimum logistics sub-model came to the realization of library in the Matlab 
environment. Then we used the library to the analysis of biomedical data about resistant depressions. 
The data consists of 114 patients with 93 properties. Three properties are output ones (positive 
response to treatment of two weeks, four weeks and total response). Seven properties are based on 
EEG cordance measurement which is very efficient indicator for responder-resistant decision. The rest 
of 83 properties are basic, biochemical, psychological and psychiatric characteristics of patients. The 
set of 114 patients consists of 89 total responders and 25 resistants and it was analyzed via logistic 
regression with optimum pruning technique of the best sub-model finding. The best sub-model is 
mainly oriented to the cordance based properties and will be used for patient classification.   

 

7   Conclusion 

Logistic regression was employed to form the best sub-models in the case of logistic regression. The 
general methodology of logistic regression with optimum pruning was developed together with a 
library of functions in the Matlab environment. The library was used to the analysis of 
neuropsychological and biomedical data related to the systematic research of resistant depressions. 
The research will help with the decision whether the patient has resistant or non-resistant form of the 
depression. 
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