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Abstract 

Ant colony optimization (ACO) represents an efficient tool for optimization and 
design of graph oriented problems. It is a multi-agent meta-heuristic approach. It is 
used for logistic, vehicle routing, minimal path search and many other problems 
which can be transformed to graph representation. The paper is devoted to extensive 
simulation tests and performance comparison of new developed variants based on re-
initialization with the most efficient ACO variant of Kumar, et al. [2] in the Matlab 
environment. 

1 Principles of the ACO algorithm 
During the search process each ant set off from ant colony, which represents the starting 

position and start to move and search for food. The aim is to find the shortest way to the food location. 
As ants are passing the terrain (graph) they mark the used routes (arcs of the graph) by a chemical 
substance called pheromone. On their way back they use the same way from which abundant loops has 
been removed. The amount of pheromone (1) )(tkijτΔ  they produced is inversely proportional to the 

tour length )(tLk  
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)(tkΤ  is the tour generated by thk −  ant, Q  is a constant and tuple ),( ji  denotes beginning and 
termination node of a graph arc. The amount of pheromone passed by each ant represents a quality of 
the particular solution. All pheromone tracks (2) are preserved by arcs of the graph 
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where ( )1,0∈ρ  is the pheromone persistence ( 1−ρ  is evaporation rate) and m  is the number of ants. 
Evaporation rate is a user adjusted parameter and affects pheromone durability; i.e. how long the 
acquired information will be available. Too high values causes random search, too low values get 
algorithm stock in local optimum.  

An ant in each node has to make a decision which arc to take. At the beginning when no 
pheromone values are available heuristic values ijη  takes dominance. Later the ant uses probability 
selection rule to choose the next arc according to 
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where )(tp kij  is probability the ant k chooses the arc ),( ji  from the neighbourhood k
iN  of node i  

except the node visited previously. The more pheromone is located on particular arc, the more 
attractive it is for the ant. The probability )(tpij  of choosing the particular arc ),( ji  depends on 

pheromone )(tijτ and  the heuristic ijη values it has associated according the equation 
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where α  and  β  are weight parameters which represents balance between the user preferred search 
area and ant’s gathered knowledge. Heuristic values ji ,η  are significant only at the beginning of the 
search process when pheromone values are low. They serve as user input to navigate the search 
process to preferred area. 

To the disadvantages of ACO algorithms belong (i) many user tuneable parameters and (ii) the 
selection pressure. While the first one is in nature of the algorithm, to the second one many papers 
have been devoted. Let’s mention MAX-MIN ant system (MMAS) [3, 4] in which pheromone values 
are restricted to an interval ),( maxmin ττ ; identification the most versatile values for ACO parameters 
[5]; a modification of Ant system (AS) called ASrank [6] where only 1−σ  ants are allowed to update 
their pheromone track; ant colony system (ACS) with pseudo-random proportional rule [7] in which 
random uniformly distributed variable 1,0∈q  is compared with a tuneable parameter 1,00 ∈q . If 

0qq ≤  then  
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else the probability selection rule (3) is applied; random selection applied to ASrank [8] where random 
selection rate r  is the probability of random selection and it represents an user parameter which adjust 
balance between exploration and exploitation; prevention of quick convergence (i) and stagnation 
avoidance (ii) mechanisms applied to AS [2]. 

The prevention of quick convergence mechanism is based on pseudo-random proportional rule 
[7], but the tuneable parameter 0q  is dependent on algorithm iteration   
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where NC is the current iteration and N_max is the termination iteration. 

The stagnation avoidance mechanism is based on comparison of randomly generated quantity 
( )1,0∈q  with probability )(tpkij  of selected arc. If )(tpq k

ij≥ , then choose the next node randomly. 
This occurs in later stages of the search process, where pheromone values tend to be high, and thus 
chance of further exploration is low. 

2 Re-initialization approach in ACO 
Re-initialization applied to ACO called ACO with macro cycles (ACOMC) has been introduced 

in [9]. The re-initialization prevents pheromone saturation and subsequently the search process from 
being entrapped in local optimum. The idea is based on pheromone accumulation behaviour (Fig. 1) 
and its limit value is  
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where Q  is a constant from equation (1), ρ  is pheromone persistence from equation (2) and +L is the 

length of the most attractive path +T . The most attractive path is the path with the highest pheromone 
values.  



 

Figure 1: Simulation of pheromone accumulation for parameters 2=m , 1=Q , 5=+L  and 
95.0=ρ  gets limit value 8. 

According to the pheromone accumulation, let us recognise three phases of search process: 
beginning (Figure 1, 40,0∈t ), saturation ( 80,40∈t ) and stagnation ( 80>t ). The search 
process is re-initialized at the beginning of the saturation phase. To determine the transition between 
the beginning and the saturation phase equation (8) cannot be used, since the length of the most 
attractive path nor number of ants constituting is not known. However, derivation of the pheromone 
accumulation can be used instead  
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Low derivation values indicate the saturation phase. The transition according to the equation (7) is 
depicted in Fig. 2. 

 
Figure 2: Bounds between beginning and the saturation phase. 

Such a search process is divided into low number of macro cycles. New search process is not 
entirely independent from the previous one; it benefits from diminished picture of pheromone 
information acquired in the previous macro cycle, while the first one relies on the heuristic values 
provided by the user. For that purpose the projection according the following equation is used 
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a reducing coefficient. The prevention of a quick convergence from Kumar, et al. (2003) is used, but 
value of the 0q  parameter is constant during one macro cycle. For subsequent macro cycles it is 
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where maxP and minP  corresponds to the limits of the interval 9.0,1.0  respectively and N is number 
of macro cycles. 

 



Further modification of ACOMC is a variable value for 0q  parameter during one macro cycle. It 
is called ACO with variable macro cycles (ACOVMC) [10]. Since the length of macro cycle varies, the 
mechanism capable of monitoring the search process within a single macro cycle is based on 

difference between mean pheromone value )(tτ  and its derivation 
dt
td )(τ

 according to equation 
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where parameter 
dttd
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τ
=  insures that 0q  varies from 0 to 1. 

3 Case study 
The above two modifications of the ACO algorithm with re-initialisation were tested and then 

compared with the most efficient algorithm ACOKTS. Common parameters for both algorithms were 
set in accordance with [5] and are listed in the Table 1. 

Table 1: COMMON ACO PARAMETERS SETTINGS 

Initial pheromone value )0(ijτ  0.1 

Weight of pheromone information α  0.5 
Heuristic values ijη  0.1 

Weight of heuristic information β  0.1 
Pheromone persistence ρ  0.95 

During the test available resources like number of ants or number of cycles were changed. For 
each setting 500 trials were performed for statistical significance. The test was performed on two 
different graphs.  

Since the ACOKTS does not use macro cycles, the first ACO versions with macro cycles were 
tested. Then the mean of the termination cycles from the best result was determined and considered as 
the input parameter for ACOKTS. 

 

3.1 Test on the 50 node graph 
The first graph is a randomly generated graph with 50 nodes and 200 arcs. Node coordinates 

yx,  are from range 1,0  and each arc value ijc  is equal to the length of the arc ija . This makes the 

difference between ijc  values very small. The graph is a symmetrical multi-graph (Fig. 3) with the 

depicted shortest path found during the test between start node 2=sn  and end node 31=en (green).  



 
Figure 3: The 50 node graph with the minimal path - green  

During the test the value of the reducing coefficient rc  was changed to investigate the impact 
on the performance. Instead to determine its value form (9) different constant settings are used 
according to the Table 2. 

Table 2: REDUCING COEFFICENT SETTINGS 

First set var=rc iable 
Second set 3.0=rc  
Third set 2.0=rc  
Fourth set 1.0=rc  
Fifth set 05.0=rc  

 

One test set is constituted by a couple of different groups with different available resources according 
to the Table 3. 

Table 3: AVAILABLE RESOURCES PER GROUP 

Group Ants Macro cycles 
1 2 2 
2 2 4 
3 2 6 
4 4 2 
5 4 4 
6 4 6 
7 6 2 
8 6 4 
9 6 6 



3.1.1 Minimal path search results 
For test evaluation the following metrics were used. The cardinality n  is the number of 

occurrences of the global optimum in 500 repetitions. bestc  is the arithmetic mean of the cycle 

numbers where the algorithm has found the best solution and terc  is the arithmetic mean of the 
termination cycle numbers. 

During the test all algorithms and variants with different settings were able to find the global 
optimum given by the minimal path 31}  24  18  22  47  26  2{min =T  and its length 

7259491.26023855min =L . The only difference was in cardinality n  and the mean value of the best 
cycle number bestc  and of the termination cycle number terc . 

The results of minimal path search show Tables 4 – 14. There is a separate table for each set 
where each line represents statistic values from 500 trials. 

 

Table 4: ACOVMC for rc = var 

Group n  
bestc  terc  

1 19	
   23.421	
   40.895	
  
2 52	
   42.846	
   81.365	
  
3 83	
   72.554	
   125.000	
  
4 39	
   23.538	
   44.590	
  
5 93	
   47.849	
   90.516	
  
6 141	
   70.837	
   137.050	
  
7 75	
   24.227	
   45.293	
  
8 129	
   48.442	
   92.713	
  
9 175	
   67.994	
   140.491	
  

 

Table 5: ACOMC for rc = var 

Group n  
bestc  terc  

1 34	
   23.147	
   42.941	
  
2 63	
   54.349	
   86.651	
  
3 102	
   81.716	
   129.755	
  
4 57	
   24.982	
   43.368	
  
5 119	
   49.395	
   91.555	
  
6 173	
   76.532	
   137.491	
  
7 72	
   25.472	
   46.458	
  
8 141	
   51.858	
   93.759	
  
9 185	
   75.005	
   140.589	
  

 

Table 6: ACOVMC for rc = 0.3 

Group n  
bestc  terc  

1 15	
   20.533	
   33.267	
  
2 46	
   33.391	
   65.652	
  
3 57	
   55.965	
   95.737	
  
4 39	
   23.590	
   41.282	
  
5 83	
   41.434	
   82.554	
  
6 100	
   64.210	
   122.480	
  
7 59	
   23.695	
   44.441	
  
8 115	
   43.739	
   86.652	
  
9 163	
   63.080	
   131.025	
  

 

Table 7: ACOMC for rc = 0.3 

Group n  
bestc  terc  

1 14	
   26.143	
   35.143	
  
2 38	
   39.868	
   66.789	
  
3 53	
   52.038	
   98.189	
  
4 48	
   21.208	
   41.896	
  
5 72	
   48.722	
   82.139	
  
6 127	
   65.291	
   122.772	
  
7 49	
   22.776	
   44.531	
  
8 115	
   46.348	
   87.757	
  
9 143	
   69.203	
   131.860	
  

 

Table 8: ACOVMC for rc = 0.2 

Group n  
bestc  terc  

1 20	
   20.200	
   36.750	
  
2 40	
   39.325	
   70.975	
  
3 83	
   61.181	
   107.145	
  
4 45	
   19.022	
   42.622	
  
5 85	
   41.318	
   85.212	
  
6 116	
   66.767	
   127.328	
  
7 62	
   23.839	
   44.984	
  
8 127	
   47.228	
   90.094	
  
9 178	
   65.534	
   133.522	
  

 

Table 9: ACOMC for rc = 0.2 

Group n  
bestc  terc  

1 23	
   23.391	
   38.478	
  
2 39	
   44.897	
   72.308	
  
3 60	
   62.167	
   108.317	
  
4 49	
   25.041	
   43.000	
  
5 101	
   50.683	
   85.485	
  
6 128	
   61.398	
   127.953	
  
7 67	
   24.687	
   44.179	
  
8 130	
   50.554	
   89.346	
  
9 176	
   69.028	
   135.477	
  

 



Table 10: ACOVMC for rc = 0.1 

Group n  
bestc  terc  

1 19	
   28.158	
   40.105	
  
2 56	
   48.125	
   77.929	
  
3 69	
   63.899	
   116.739	
  
4 44	
   25.864	
   43.545	
  
5 93	
   41.925	
   87.667	
  
6 132	
   66.992	
   132.720	
  
7 63	
   20.889	
   44.841	
  
8 136	
   45.184	
   89.662	
  
9 167	
   63.784	
   137.198	
  

 

Table 11: ACOMC for rc = 0.1 

Group n  
bestc  terc  

1 29	
   25.345	
   40.207	
  
2 49	
   50.959	
   80.061	
  
3 76	
   66.539	
   117.711	
  
4 49	
   28.082	
   43.776	
  
5 96	
   48.594	
   88.260	
  
6 132	
   79.174	
   131.939	
  
7 52	
   24.481	
   45.673	
  
8 133	
   48.820	
   92.774	
  
9 164	
   74.799	
   137.567	
  

 

Table 12: ACOVMC for rc = 0.05 

Group n  
bestc  terc  

1 29	
   26.552	
   39.034	
  
2 53	
   52.434	
   81.377	
  
3 77	
   68.351	
   120.117	
  
4 47	
   26.979	
   44.638	
  
5 83	
   47.325	
   89.277	
  
6 114	
   61.719	
   134.289	
  
7 82	
   26.598	
   45.659	
  
8 134	
   45.358	
   91.888	
  
9 172	
   64.291	
   138.238	
  

 

Table 13: ACOMC for rc = 0.05 

Group n  
bestc  terc  

1 26	
   27.346	
   41.077	
  
2 60	
   48.567	
   83.867	
  
3 82	
   77.305	
   121.659	
  
4 52	
   23.365	
   43.962	
  
5 103	
   51.495	
   90.738	
  
6 152	
   77.401	
   134.796	
  
7 60	
   27.283	
   45.300	
  
8 130	
   54.977	
   92.215	
  
9 205	
   71.473	
   139.054	
  

 

Table 14: ACOKTS  

Group n  
bestc  terc  

1 29	
   26.552	
   43	
  
2 70	
   45.214	
   87	
  
3 117	
   70.829	
   130	
  
4 66	
   26.152	
   43	
  
5 113	
   47.814	
   92	
  
6 200	
   72.320	
   137	
  
7 100	
   26.430	
   47	
  
8 192	
   45.406	
   94	
  
9 252	
   66.313	
   141	
  

 

 

 

Both ACO variants with macro cycles achieved the best performance with reducing coefficient 
which was set to variable. The simple variant ACOMC outperformed ACOVMC in the most cases. 

The comparison of ACOKTS with best delivered results from macro cycle variant (ACOMC, Table 
5) reveals ACOKTS superior performance in each group (Table 14). The differences become larger with 
more resources available. 

 



3.1.2 Results for the maximal path search 
The graph, base parameters and reducing coefficient setting are the same as for the minimal path 

search case. Available resources, like number of ants and macro cycles, are in the Table 15. In each 
trial a different local optimum was found. Local optimum is given by the path maxT  and it’s length 

maxL . Since each settings with 500 trials found different local optimum, results in Tables 16 – 26 are 

extended by the length of the best solution maxL  and arithmetic mean of all maxL  values maxL . 

Table 15: AVAILABLE RESOURCES PER GROUP 

Group Ants Macro cycles 
1 4 4 
2 4 6 
3 4 8 
4 6 4 
5 6 6 
6 6 8 
7 8 4 
8 8 6 
9 8 8 

 

Table 16: ACOVMC for rc = var 

Group 
maxL  maxL  bestc  terc  

1 6.044	
   3.905	
   44.064	
   89.922	
  
2 5.330	
   4.042	
   65.290	
   134.898	
  
3 5.332	
   4.113	
   88.410	
   180.306	
  
4 5.445	
   4.047	
   45.340	
   92.352	
  
5 5.319	
   4.091	
   68.822	
   139.052	
  
6 5.533	
   4.222	
   89.410	
   186.324	
  
7 5.578	
   4.094	
   46.088	
   92.160	
  
8 5.446	
   4.206	
   70.552	
   140.190	
  
9 5.309	
   4.270	
   88.480	
   187.490	
  

 

Table 17: ACOMC for rc = var 

Group 
maxL  maxL  bestc  terc  

1 5.081	
   3.913	
   34.460	
   68.548	
  
2 5.205	
   3.981	
   51.022	
   102.714	
  
3 5.796	
   4.082	
   70.002	
   138.168	
  
4 5.363	
   4.001	
   35.718	
   70.624	
  
5 5.253	
   4.121	
   52.794	
   107.886	
  
6 5.542	
   4.210	
   74.350	
   143.352	
  
7 5.678	
   4.102	
   36.702	
   72.858	
  
8 5.309	
   4.194	
   55.532	
   110.012	
  
9 5.504	
   4.270	
   72.374	
   147.498	
  

 

Table 18: ACOVMC for rc = 0.3 

Group 
maxL  maxL  bestc  terc  

4.914	
   3.892	
   38.572	
   81.332	
   4.914	
  
5.499	
   4.007	
   60.842	
   121.166	
   5.499	
  
5.416	
   4.102	
   75.902	
   161.314	
   5.416	
  
5.063	
   4.019	
   43.416	
   86.900	
   5.063	
  
5.516	
   4.110	
   65.134	
   129.760	
   5.516	
  
5.187	
   4.177	
   84.870	
   173.012	
   5.187	
  
5.441	
   4.101	
   42.590	
   88.908	
   5.441	
  
5.814	
   4.177	
   65.520	
   133.604	
   5.814	
  
5.445	
   4.246	
   86.104	
   178.298	
   5.445	
  

 

Table 19: ACOMC for rc = 0.3 

Group 
maxL  maxL  bestc  terc  

1 4.883	
   3.880	
   32.856	
   67.448	
  
2 5.138	
   3.998	
   49.892	
   99.914	
  
3 5.674	
   4.061	
   66.734	
   133.254	
  
4 5.541	
   4.041	
   35.604	
   70.798	
  
5 5.402	
   4.083	
   53.282	
   105.564	
  
6 5.243	
   4.192	
   72.992	
   142.160	
  
7 5.524	
   4.078	
   36.018	
   72.574	
  
8 5.384	
   4.194	
   57.322	
   110.048	
  
9 5.695	
   4.277	
   72.950	
   148.266	
  

 



Table 20: ACOVMC for rc = 0.2 

Group 
maxL  maxL  bestc  terc  

5.142	
   3.900	
   41.104	
   84.540	
   5.142	
  
5.397	
   4.024	
   61.982	
   125.892	
   5.397	
  
5.581	
   4.098	
   81.950	
   167.378	
   5.581	
  
5.537	
   3.997	
   42.398	
   88.696	
   5.537	
  
5.618	
   4.121	
   64.878	
   133.220	
   5.618	
  
5.532	
   4.178	
   86.460	
   177.428	
   5.532	
  
5.387	
   4.080	
   43.748	
   89.924	
   5.387	
  
5.423	
   4.209	
   65.272	
   135.436	
   5.423	
  
5.726	
   4.258	
   92.486	
   181.210	
   5.726	
  

 

Table 21: ACOMC for rc = 0.2 

Group 
maxL  maxL  bestc  terc  

5.433	
   3.885	
   33.524	
   67.392	
   5.433	
  
5.569	
   4.024	
   51.644	
   101.748	
   5.569	
  
5.201	
   4.077	
   65.446	
   134.454	
   5.201	
  
5.360	
   3.996	
   35.710	
   71.174	
   5.360	
  
5.765	
   4.127	
   52.264	
   106.570	
   5.765	
  
5.680	
   4.200	
   68.572	
   143.542	
   5.680	
  
5.457	
   4.099	
   37.780	
   73.356	
   5.457	
  
5.540	
   4.176	
   53.892	
   111.016	
   5.540	
  
5.550	
   4.297	
   73.896	
   148.392	
   5.550	
  

 

Table 22: ACOVMC for rc = 0.1 

Group 
maxL  maxL  bestc  terc  

1 5.174	
   3.921	
   44.260	
   86.946	
  
2 5.305	
   4.015	
   63.664	
   130.738	
  
3 5.604	
   4.097	
   83.580	
   173.886	
  
4 5.362	
   4.033	
   43.924	
   90.828	
  
5 5.380	
   4.137	
   67.598	
   135.826	
  
6 5.435	
   4.195	
   92.174	
   182.040	
  
7 5.181	
   4.078	
   45.776	
   92.204	
  
8 5.336	
   4.202	
   68.340	
   138.040	
  
9 5.621	
   4.246	
   87.920	
   184.628	
  

 

Table 23: ACOMC for rc = 0.1 

Group 
maxL  maxL  bestc  terc  

1 6.208	
   3.879	
   33.124	
   68.402	
  
2 5.271	
   3.999	
   48.930	
   101.882	
  
3 5.597	
   4.091	
   67.714	
   135.590	
  
4 5.124	
   4.016	
   35.190	
   71.502	
  
5 5.534	
   4.143	
   53.434	
   107.900	
  
6 5.645	
   4.185	
   69.630	
   143.328	
  
7 5.523	
   4.101	
   37.048	
   72.584	
  
8 5.466	
   4.192	
   55.104	
   110.972	
  
9 5.637	
   4.284	
   77.918	
   149.960	
  

 

Table 24: ACOVMC for rc = 0.05 

Group 
maxL  maxL  bestc  terc  

1 5.372	
   3.947	
   42.400	
   88.362	
  
2 5.178	
   4.015	
   69.290	
   133.076	
  
3 5.807	
   4.124	
   90.172	
   177.030	
  
4 5.307	
   3.997	
   43.308	
   91.968	
  
5 5.393	
   4.133	
   66.812	
   137.390	
  
6 5.723	
   4.216	
   90.742	
   183.598	
  
7 5.399	
   4.081	
   45.412	
   92.672	
  
8 5.381	
   4.199	
   68.016	
   139.458	
  
9 5.513	
   4.289	
   90.216	
   185.814	
  

 

Table 25: ACOMC for rc = 0.05 

Group 
maxL  maxL  bestc  terc  

1 5.267	
   3.885	
   35.314	
   68.600	
  
2 5.752	
   4.028	
   49.984	
   102.628	
  
3 5.312	
   4.058	
   69.240	
   136.998	
  
4 6.079	
   4.009	
   34.152	
   71.746	
  
5 6.005	
   4.130	
   54.092	
   108.154	
  
6 5.435	
   4.214	
   70.286	
   145.074	
  
7 5.378	
   4.096	
   37.278	
   73.908	
  
8 5.453	
   4.210	
   56.564	
   111.952	
  
9 5.493	
   4.273	
   72.212	
   149.908	
  

 

Table 26: ACOKTS  

Group 
maxL  maxL  bestc  terc  

1 5.091	
   3.966	
   42.768	
   90.000	
  
2 5.253	
   4.058	
   65.470	
   135.000	
  
3 5.299	
   4.130	
   84.088	
   180.000	
  
4 5.211	
   4.058	
   43.656	
   92.000	
  
5 5.538	
   4.171	
   64.506	
   139.000	
  
6 5.974	
   4.235	
   92.780	
   186.000	
  
7 5.937	
   4.131	
   41.924	
   92.000	
  
8 5.710	
   4.221	
   68.200	
   140.000	
  
9 5.595	
   4.332	
   88.494	
   187.000	
  

 

 

 



 ACOVMC has a longer search process in each set, but the highest best value maxL varies 
between ACOVMC and ACOMC. Constant values for the reducing coefficient cause decrease in 
performance. Better results were achieved with lower values of the reducing coefficient. It could even 
outperform variable settings with 0.05 for ACOVMC and with 0.02 for ACOMC. Decreasing of the 
values of the reducing coefficient causes longer search process for ACOVMC, but it did not have the 
same impact on ACOMC.  

The mean values for the termination cycle were taken form ACOVMC (Table 16) and were used 
for ACOKTS (Table 26). The results reveal ACOKTS outperforms ACOVMC in terms of maxL  in each 
group. However, the difference is very small.  

 

3.2 Test on the 62 node graph 
The second graph is an asymmetric multi graph with 62 nodes and 114 arcs in which ants are 

allowed to take any arc in direction from the left to the right only. The start node is 62=sn  and the 

end node is 21=en . Figure 4 shows the graph with the best path in red.  

 
Figure 4: The 62 node graph with maximal path - red 

The resources represented by number of ants and number of macro cycles are in Table 3. The 
reducing coefficient was set as variable. Notice that this graph was designed to lead the greedy 
algorithms out of the global optimum. Ant need to take arcs with low values and at the end it receives 
300 on the last arc 21,61a . 

All algorithms with all different parameter settings were able to find the longest paths {62 42 
43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 21} with value 2.300=+L . The only 
difference was in cardinality n  and arithmetic mean of the best value cycles bestc . As the test results 
show, there is a difference between ACOVMC and ACOMC (Table 27 and 29) performance. Thus test for 
ACOKTS was running twice; once for termination cycles set according to ACOVMC (Table 28) and once 
according to ACOMC (Table 30). That allowed the performance cross comparison between both 
versions of ACO with macro cycles and ACOKTS.  



Table 27: ACOVMC  

Group n  
bestc  terc  

1 11	
   6.364	
   10.545	
  
2 14	
   11.857	
   29.071	
  
3 28	
   20.107	
   44.536	
  
4 15	
   5.867	
   14.067	
  
5 53	
   14.151	
   37.434	
  
6 54	
   22.259	
   59.204	
  
7 43	
   6.186	
   18.698	
  
8 80	
   18.138	
   45.313	
  
9 132	
   31.394	
   71.485	
  

 

Table 28: ACOKTS  

Group n  
bestc  terc  

1 4	
   7.000	
   11	
  
2 15	
   10.133	
   29	
  
3 13	
   13.846	
   45	
  
4 13	
   4.462	
   14	
  
5 24	
   9.417	
   37	
  
6 25	
   15.360	
   59	
  
7 26	
   6.000	
   19	
  
8 38	
   10.474	
   45	
  
9 37	
   17.583	
   71	
  

 

Table 29: ACOMC  

Group n  
bestc  terc  

1 14	
   10.857	
   23.643	
  
2 37	
   19.703	
   50.622	
  
3 59	
   37.898	
   79.678	
  
4 33	
   13.091	
   21.212	
  
5 41	
   12.634	
   25.146	
  
6 46	
   15.326	
   26.957	
  
7 41	
   8.829	
   23.244	
  
8 52	
   9.981	
   24.327	
  
9 42	
   13.286	
   25.714	
  

 

Table 30: ACOKTS  

Group n  
bestc  terc  

1 14	
   7.214	
   24	
  
2 17	
   9.765	
   51	
  
3 27	
   15.259	
   80	
  
4 17	
   6.235	
   21	
  
5 17	
   11.118	
   25	
  
6 20	
   6.450	
   27	
  
7 23	
   8.087	
   23	
  
8 30	
   4.467	
   24	
  
9 22	
   6.636	
   26	
  

 

 

ACOMC leads to higher cardinality and longer search process only for limited resources, i.e. up 
to 6 ants and 4 macro cycles (Table 27, 29). Then ACOVMC higher cardinality and longer search 
process. The more resources are available the bigger the difference is. 

The performance of ACOKTS is worse than any ACO variant with macro cycle, especially 
ACOVMC (Table 27, 28). The difference only increases with increasing number of resources. 

 

4 Conclusion 
In the 50 node graph path minimisation, ACOKTS outperforms the ACOMC. However, for 

maximal path search the difference between ACOKTS and ACOVMC is very small. In the 62 node graph, 
where the success depends on finding a single well hidden global optimum, both variants ACO with 
macro cycles outperform ACOKTS. 

In the 50 node graph, ACOMC outperforms ACOVMC for minimal path search. For maximal path 
search the best result varies between ACOMC and ACOVMC. In the 62 node graph, ACOMC outperforms 
ACOVMC only with the use of limited resources. With more resources, ACOVMC outperforms ACOMC 
and the difference increases with increasing number of resources. 

The influence of the reducing coefficient is significant. In general, constant values cause 
performance decrease. The lower the constant value is the better the performance is. However, only 
for maximal path search the low constant values are able to outperform results obtained with variable 
reducing coefficient. 

In general, the here obtained results are promising. They show a performance potential 
compared to ACOKTS. Further improvement of ACO macro cycles variant will be achieved by longer 
search process. But the search process will have longer macro cycle instead of more macro cycles, 
which will allow better utilisation of already gathered knowledge. This will be obtained by re-
initialisation shift to a later stage, i.e. between the saturation and stagnation phase. Further tests are 



necessary to evaluate the impact of such modifications. However, the benefit of more intuitive input in 
number of macro cycles versus number of cycles can prevent from unnecessary long search process. 
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