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Abstract 

Electrical stimulation of a neural fibre is an alternative treatment of many 
neurological diseases, where conventional treatment procedures have undesirable 
side effect. Development of electrical stimulation technique suitable for reversible 
block propagation of pathological neural impulses is a challenging task. In this 
article, we have analyzed possibility of neural impulse propagation blocking by 
computer simulation. We have modeled neural fibre using partial differential 
equation and solved the model in Matlab. We have demonstrated that a high 
frequency stimulation has potential to disrupt pathological neural propagation.  

1 Introduction  
Many neurological diseases are characterized by increased neuronal activity that results in 

undesirable sensory or motoric effects, such as pain, abnormal muscle activity, spasticity, or tremor. 
Conventionally used treatment methods involve surgical and pharmacological procedures that are 
often accompanied by irreversible changes and side effects. An electrical stimulation that electrically 
blocks propagation of the neural activity is a perspective alternative treatment.  

Up today, various types of electrical stimulation techniques have been developed, utilizing 
different mechanism of action to achieve expected clinical goal. Surface stimulation is useful for 
muscle strengthening, localized stimulation of small muscle groups is required to restore some motor 
and sensory function. Conventionally, stimulation of a nerve fibre increases its neural activity. 
Therefore, inhibition of neural activity, desirable for pain and spasticity reduction, is usually achieved 
trough neurophysiological feedback pathways. Possibility to block the undesired activity propagation 
by electrical stimulation is a challenging alternative.  

Electrical stimulation of a nerve fibre commonly initiates two action potentials that propagate in 
opposite directions from the stimulated region. Impulse propagation can be stopped by eliciting a 
unidirectionally propagated collision impulse or by the high frequency (HF) alternating current 
stimulation [1] – [4]. Eliciting of collision impulse requires special (tripolar) arrangement of 
stimulation electrodes [5]. It has been demonstrated experimentally that high frequency high 
amplitude stimulus can also result in reversible conduction block [2], [3]. Mathematical modeling and 
computer simulation are useful in deeper understanding of this phenomenon.  

This paper presents simulation of the effect of an alternating current stimulus on the neural 
impulse propagation. The neural fibre is modelled by partial differential equation (PDE) based on 
Fitzhugh-Nagumo model [6], [7]. The system of PDE is numerically solved by means of Matlab 
function pdepe.  

2 Neural fibre model  
 

Mechanism of neural action potential propagation can be investigated using segments of lumped 
circuit model or using partial differential equations. Local segment of different nerve fibre are 
modeled using particular local model, e.g. Hodgkin-Huxley (HH) model of unmyelinated nerve fibre 
[8], Fitzhugh-Nagumo model [6], [7], Frankenhaeuser-Huxley model [9], Chiu-Ritchie-Rogart-Stagg-
Sweeney model [10], Schwarz-Eikhof model [11]. 

In this work we use Fitzghugh-Nagumo model that reduces HH model to 2 equations. Despite 
gross simplification incorporated in this model, simulation is able to qualitatively reproduce behavior 
of actual biological excitable membranes. 



The FitzHugh-Nagumo neuron model in presence of inhomogenously applied HF stimulation current 
is described as 

!"
!"
= ! − !!

!
− ! + ! !!!

!"!
+ !(!, !) cos(!")     (1) 

 
!"
!"
= !(! + ! − !")        (2) 

Equation (1) describes the dynamics of the membrane potential v, where D is the diffusion coefficient 
and parameters a and ω define the amplitude and frequency of HF stimulation current induced by  
electrode. Equation (2) defines the dynamics of the slow recovery variable w with a positive rate 
parameter ! ≪ 1. The parameters β and γ are chosen such that without HF stimulation (a = 0) the 
neuron is in an excitable regime. In numerical simulations presented below, we take D = 1 without 
loss of generality [4]. 

 

3 Simulation of the model in Matlab  
Fitzhugh-Nagumo model represents system of 2 nonlinear PDE in one space dimension 

that can be solved by Matlab function pdepe, (no special toolbox for PDE solution is required).  
Let us consider system of nonlinear partial differential equations in one space dimension. In this 

case, the predefined function pdepe allows us to solve initial boundary value problems for system of 
parabolic-elliptic PDEs in 1D. The class of parabolic-elliptic PDEs, defined in ! ≤ ! ≤ !, !! ≤ ! ≤ !!, 
to which the function can be applied, has the form [12]: 
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where u is a vector-valued unknown function that depends on a scalar space variable x and a scalar 
time variable t; the flux function f and the source function s are vector-valued functions; the integer 
m�{0,1,2} corresponds to slab, cylindrical, and spherical symmetry, respectively; the function C is a 
diagonal matrix whose diagonal entries are zero or positive (which corresponds to elliptic or parabolic 
equations, respectively). Initial condition at  ! = !! and for ! ≤ ! ≤ ! and a given function !! is 
defined as follows: 
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The boundary conditions at !   =   ! and !   =   !   and for !!   ≤   !   ≤    !!    have the form: 
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where p and q are given vector-valued functions. 
Since the predefined function pdepe implements a second-order spatial discretization method 

based on the xMesh values, it follows that the choice of xMesh is important and can affect the 
accuracy and cost of the numerical solution (e.g., it is best to define closely spaced xMesh points for 
domains where the solution can vary rapidly with respect to x). The time points in [t0, tf ] at 
which the solution is obtained are given in the vector tSpan, where tSpan(1)=t_0, 
tSpan(end)=t_f, and elements of tSpan monotonically increase. Since the time integration in 
pdepe is performed by the stiff ODE solver ode15s, the actual time step values are chosen 
dynamically and do not affect the accuracy and cost. 

To apply the pdepe function, we denote (!,!) by (!!, !!)   and rewrite the nonlinear system 
(1) – (2) as follows: 
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Function pdepe requires to define three functions. These functions provide: 



1. description of PDE system,  
2. initial condition (IC) specification, 
3. boundary condition (BC) specification. 

It is convenient to define these functions as nested functions, then model parameter will be visible 
inside inner functions.  

PDE system function returns three arguments: c – related to left hand side of PDE system, f 
related to spatial derivative terms, s is expressed in terms of state variables and stimulus input 
(defined in separate function, not listed below).  

 
function [c,f,s]=PDEfun(x,t,u,DuDx) 
c=[1;1]; 
f=[DuDx;0]; 
s=[u(1)-1/3*u(1)^3-u(2)+Stimulus(x,t); e*(u(1)+b-g*u(2))]; 
end 

Initial conditions are determined as equilibrium state of the system, obtained by setting all derivatives 
to zero. These conditions result in cubic equation that is solved using roots function 
 

v=roots([g/3, 0, 1-g, b]); 
v0=v(find(imag(v)==0)); 
w0=v0-v0^3/3; 
 

and initial condition function is  
 

function u0=ICfun(x) 
u0=[v0;w0]; 
end 
  

Boundary conditions are supposed to be zero.  
 

function [pL,qL,pR,qR]=BCfun(xL,uL,xR,uR,t) 
pL=[0;0]; qL=[1;1]; pR=[0;0]; qR=[1;1]; 
end 

 
Numerical solution of the model is obtained by calling pdepe  function from caller (outer) function.  
 

sol=pdepe(m,@PDEfun,@ICfun,@BCfun,x,t,options); 
u1=sol(:,:,1); u2=sol(:,:,2); 
 
 

4 Results  
Outline of the fibre model is depicted in Figure 1:  Pathological impulse was elicited by short-

duration monopolar impulse stimulus applied at the left end of the fibre and it propagates to the right 
side. Additionally, high frequency (HF) sinusoidal stimulation is applied approximately in the middle 
region of fibre. At the right end of fibre we examined, whether a pathological impulse is arrived or 
not. 

Parameters of the model were adopted from [4]: ε = 0.008, β = 0.7, γ = 0.8. D = 1. Notice that 
all quantities are scaled (dimensionless). Fiber boundaries are located at coordinates xL = -100, 
xR = 200. Alternating HF stimulation is modeled as sinusoid of angular frequency 50 (rad), applied 
between coordinates xsL= -10, xsR = 150. Pathological impulse is elicited between positions xnL= -100 
and xnR = -80. Amplitude of the sinusoidal stimulus was 30 and for second case it was increased to 60.  
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Figure 1: Specification of stimulation regions: region from xnL to xnR for pathological nerve 
impulse generation and region from xsL to xsR for sinusoidal HF stimulation  

 

Simulation starts at time 0 with sinusoidal HF stimulation. As a response to the onset of the HF 
stimulation, two action potentials (artefacts) are generated at the end of the stimulated region (xsL, xsR) 
and propagate in opposite directions (and after time about 150 they are out of observed region of the 
fibre).  

Short-duration monopolar impulse (generating pathological nerve impulse) starts at time 300 
and lasts for 50 time units. 

In the case of low amplitude (30) of HF stimulation current, pathological impulse propagates 
across HF stimulated region (Figure 2). As amplitude of HF stimulation increases to 60, propagation 
of pathological impulse is blocked (Figure 3).  

 

   
Figure 2: Propagation of neural impulse: low-amplitude of HF stimulation 

 

   
 

Figure 3: Blockade of pathological neural impulse propagation (high-amplitude of HF 
stimulation) 

5 Conclusion  
In this article we outlined possible utilization of Matlab PDE solver in bioengineering, 

particularly in the neural sciences. Despite simplifications in our model we were able to reproduce 



qualitatively the experimentally observed behaviour of nerve fibre for the case of nerve impulse 
collision with simultaneous high-frequency stimulation signal.  

Understanding of the mechanisms of nerve conduction block induced by electrical current is 
helpful in developing new methods to block pathological impulses propagation along peripheral 
nerves under different clinical conditions, e.g. in the control of spasticity and pain relieving. 
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