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Abstract 

The paper presents PID controller design using modification of the Aström and 
Hägglund’s generalized Ziegler-Nichols rules. The design procedure consists in 
shifting the plant critical point into a specific point. Its position is defined by desired 
performance specification in term of achieving maximum overshoot and specified 
settling time of the closed-loop response or phase margin. The method is illustrated 
by the example. 

1 Introduction 
The frequency domain PID controllers tuning is a topic of great interest in the industries. Much 

of them are issued from [1]. The original Ziegler-Nichols method moves the critical point into a point 
with fixed coordinates according to the chosen type of controller. For a P-controller it is the point 
[ ]j0;5.0 −− , for a PI controller the point [ ]j0896.0;45.0 +−  and for a PID controller is it 
[ ]j28.0;6.0 −− . This method gives relatively oscillating closed-loop performance; therefore various 
possibilities have been studied how to move the critical point. Up to now, more than 40 modifications 
were derived [2]. Using these methods, only small information is needed about the plant, however 
most of these methods can guarantee desired closed-loop performance. 

In this paper the controller design have been presented by entered of system critical point and by 
moving calculating this point on the basis of performance specification. The method pursues from [3] 
and [4]. 

2 Design of PID controller 
The critical gain and critical frequency can be obtained by several approaches, e.g. by 

increasing the gain of P controller to ultimate gain at which the output of the control loop oscillates 
with a constant amplitude. 

Consider the following performance specifications: 
A) desired phase margin, 
B) maximum overshoot and settling time of the closed-loop step response.  

At first we show how to find the aim point: where to move the plant critical point for A) specification.  

 
Figure 1: Graphical representation of points LA and LF on the Nyquist plot 



Consider the Nyquist plot with points LA and LF which are shown in Figure 1. The point LA 

intersects the Nyquist plot with unit circle. The corresponding frequency for LA is aω  with coordinates 
[ ]MM sin,cos ΘΘ , where ΘM is the achieved desired phase margin. The point LF has coordinates 
[ ]0,/1 MG− , where MG  is gain margin. In Bode plot, point LF is phase intersection and LA is 
amplitude intersection. 

Coordinates of point LA are the aim of moving the plant critical point. This point is 
 [ ] ]Θsin,Θcos[, MM=yx . (1) 
 
Now, we show determination of aim point: where to move the plant critical point for B) specification.  

A perfect tracking of controlled variable means, that the magnitude of complementary 
sensitivity function  
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will be equal to one on the full frequency range (i.e. the control variable tracks the reference signal 
without error). For this purpose it is necessary to choose only specific range of frequency pω,0 , 

where an increase of bound pω  causes an increase of amplitude characteristic resonance peak |T(jω)| 
and therefore also maximal magnitude 
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In this way the tendency of closed loop vibration increases. 

Let for transfer function of open loop holds 
 ( ) ( )ωωω jVUjL +=)(  (4) 

Then the magnitude tM  square satisfies 
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After substituting rωω =  into (3) and after some modifications we obtain 
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The equation (6) gives circle with center in CT and radius RT 
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Therefore the points which lie in this circle satisfy also condition of maximum overshoot maxη . 
The magnitude of tM  can be obtained from 
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where T(0)=1, if controller has integration component and maxη  is given for entered maximum 
overshoot. 

Further condition is settling time. The position of LA is: 

 ( ) 22log20log20: yxjLL cA +=ω  (10) 



This position relates with settling time and therefore with position of point [ ]yx, . The frequency of 
amplitude intersection aω  can be estimated by relation 
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and settling time can be computed from aω  as follows 

 
a
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where γ is curve factor. For aperiodic closed-loop responses 3=γ  is chosen, for oscillatory output 
variable response ππγ 4,=  is chosen (see [5]). 

Let us denote  
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If σ is from interval <0.5, 0.95> then the closed-loop performance is satisfactory [6]. 

After substituting (13) into (12) and some manipulation with denominator we obtain  

 regcregt τ
σ
γω ==  (14) 

where regτ  is relative settling time, which expresses the real settling time weighted by the critical 

frequency cω  of controlled plant. It is a dimensionless quantity which enables to express expected 
closed-loop dynamics for plants with various dynamics. 

Let us make some manipulations with (11): 
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We have obtained another circle equation (15), this time for specification of settling time.  

The aim point which has been found is the intersection of curve (6) and (15) and its coordinates 
were calculated in MATLAB symbolic toolbox. 

The open-loop transfer function can be formulated as follows:  
 jyxjGjGjL cRcsc +=)()(=)( ωωω  (16) 

After substituting [ ]0;/1 jKc−  for critical point, it is possible to express the controller transfer 
function at critical frequency cω  as complex number  
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Consider frequency transfer functions of PI, PD and PID controllers:  
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then coefficients of individual controllers can be obtained by substitution (17) into (18). Namely, for 
PI controller: 
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For PD controller we have: 
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and for PID controllers: 
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If the derivative time constant is given or if di TT β=  then 
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The controller coefficients have to be nonnegative then the following constraints hold: 

For PI controller it should be x<0 and y>0. For PD controller x<0 and y<0 have to hold. And for 
PID controller x<0 holds and sign of y is determined so that Td>0. If Td>0, then Ti=βTd>0. 

These conditions for position of specific point result from the natural effect of individual 
controller component. Their effect is depicted in Figure 2. 

 
Figure 2: The effect of individual controller component for point moving 

3 The program for PID controller design 

For PID controller design obtained by modification of the Ziegler-Nichols method a program in 
MATLAB graphical user interface was made (see Figure 3).  

GUI is divided into several parts: 

− Input of the plant transfer function Gs(s), 

− Input of the desired performance specification (maximum overshoot, specified settling 
time of the closed-loop response or phase margin), 

− window for new location of the points to be moved, 

− window of controller coefficients, 

− Nyquist plot in the complex plane, 

− closed-loop step responses. 



 
Figure 3: The main window GUI for modified Ziegler-Nichols method  

The program use steps: 

1) Input of the plant transfer function Gs(s): 

at this step, numerator and denominator are verified whether numerical values were inserted. 
GUI offers the possibility to input transport delay. After pressing „OK“, the critical frequency is 
computed as well as ultimate gain of the plant. These can be modified. Step response and Nyquist plot 
in the complex plane are depicted in corresponding windows. 

2) Input of desired performance specification 

There are two possibilities: 

A) phase margin – window with a request on phase margin is shown, with possibility to choose 
the input value of phase margin, 

B) maximum overshoot and specified settling time of the closed-loop response – there are three 
parameters: desired maximum overshoot, settling time and gama curve factor.  

For all entered values in the part for performance specification, intervals of allowed values are 
displayed. 

After inserting all necessary parameters it is necessary to choose one of PID structures, it is 
possible to choose PI, PD or PID controller. Button “OK” starts computation, the results are 
coordinates of aim point (to which the critical point should be moved). On the Nyquist plot and step 
response, particular curves are shown and aim points are depicted. 

3) Window for new location of the moved points:  

There can be two points in this window, where the result of the phase margin request is only one 
point [x, y] and by combination of maximum overshoot and settling time, two points [x, y] , [x1, y1] 
are received. 

For study aim it is possible to edit these points. 

After pressing button „Vypočítať=>“, all possible controller coefficients are computed, where 
for PID controller there are at least two. In MATLAB command window all controller transfer 
functions are written on the background. 

By pressing button „Vykresli“ open and closed-loop transfer functions are formed, but only if is 
the conditions of nonegative controller coefficients are satisfied. Then Nyquist plot and step responses 
are depicted, but only for control loop, which are stable. This constraint has practical reason, because 
nonstable system would require improper scaling. 



For verification of the phase margin there is a possibility to depict Bode frequency logaritmic 
characteristic for built up systems with designed controllers. 

4 Example 

Consider the plant 
122

1=)( 23 +++ sss
sGs  

The part of main window GUI for the input of the plant transfer function is depicted in Figure 4 
together with its critical gain and critical frequency. 

 
Figure 4: The window for input of plat transfer function Gs 

Let us choose performance specification in the form of phase margin equal to 30° and PID 
structure of controller (see Figure 5). 

 
Figure 5: The window for choosing performance specification in the form of phase margin  

Computed coordinates of aim point are in the Figure 6: 

 
Figure 6: Computed coordinates of aim points  



 
Figure 7: Complex plane, Nyquist plot of Gs, critical point, unit circle and aim point (x,y) 

All necessary values and curves are depicted in complex plane in Figure 7.  

By pressing the button „Vypočítať“ individual coefficients of controller are depicted. Because 
there is PID structure, the solutions are two (see Figure 8). 

 
Figure 8: Computed coefficients of PID controller 

By pressing the button „Vykresli“ the controller with negative coefficients is red highlighted, 
what means, that this controller is not suitable for close loop control. 

Open loop Nyquist plot is depicted (see Figure 9) in the complex plane and in the second 
window, close loop step response is shown (see Figure 10). Similarly, it is possible to depict also open 
loop Bode plot (see Figure 11). 

 
Figure 9: Complex plane with depicted aim point, Nyquist plot of the plant and of the open-loop 



 
Figure 10: Closed loop step response with PID designed by phase margin and step response of plant 

Gs(s) 

 
Figure 11: Open loop Bode plot for a designed PID controller with desired phase margin 

Similar procedure is when we consider the second possibility of performance specification: 

Maximum overshoot 20°, settling time 15s and curve factor 12. The results are shown in the 
Figure 12 and Figure 13. 

 
Figure 12: Coordinates of aim point  

 
Figure 13: Computed controller coefficients 

Two controllers (mark by red colour) have negative coefficients, and therefore they cannot be 
used for control. The controller marked by orange colour gives non stable closed loop characteristic 
polynomial. Therefore, only third controller is suitable for control. The closed loop step response only 
for third controller is shown in the Figure 14. 



 
Figure 14: Step response of plant Gs(s) and step response of closed loop for desired maximum 

overshoot, settling time and gama curve factor. 

Designed controllers in both cases satisfy performance specifications. Some of systems are not 
suitable for the presented method, because they cannot be driven to the stability margin. It is necessary 
to note that we know only critical attributes, which for some systems do not guarantee appropriate 
controller design, because it is necessary to know more information. 

5 Conclusion 

The proposed PID controller design method provides two variants of modification of Ziegler-
Nichols method for the improvement of performance specification. The method allows to obtain a 
desired phase margin or maximum overshoot with settling time. The procedure is designed in 
MATLAB graphical user interface for arbitrary system. For systems of the first or second orders the 
method cannot be used because the plant cannot be get at the stability boundary. 
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