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Abstract 

The paper deals with a genetic and robust controller design methods for uncertain 
SISO systems. The main idea of paper is to comparison of classical method for robust 
controller design (Edge Theorem and Small Gain Theorem) with genetic algorithm 
(GA). The first approach is accomplished with the Edge Theorem and the Neymark 
D-partition method for the affine model. The second controller design method is 
based on the Small Gain Theorem considering uncertain system model with additive 
uncertainty. For the both methods, the designer can specify a required closed-loop 
degree of stability. The genetic algorithm represents an optimisation procedure, 
where the costs function to be minimized comprises the closed-loop simulation of the 
control process and a selected performance index evaluation. Using this approach the 
parameters of the PID controller were optimised in order to become the required 
behaviour of the control process. The comparison of methods is illustrated by the 
robust controller design for two linear systems with uncertain parameters.  

1 Introduction 
For many real processes a controller design has to cope with the effect of uncertainties, which 

very often cause a poor performance or even instability of closed-loop systems. The reason for that is 
a perpetual time change of parameters (due to aging, influence of environment, working point changes 
etc.), as well as unmodelled dynamics. The former uncertainty type is denoted as the parametric 
uncertainty and the latter one the dynamic uncertainty. A controller ensuring closed-loop stability 
under both of these uncertainty types is called a robust controller. A lot of robust controller design 
methods are known from the literature [1], [2] in the time- as well as in the frequency domains. 

The focus of this paper is to comparison of classical method for robust controller design (Edge 
Theorem and Small Gain Theorem) with genetic algorithm. The first approach is accomplished with 
the Edge Theorem and the Neymark D-partition method for the affine model. The second controller 
design method is based on the Small Gain Theorem considering uncertain system model with additive 
uncertainty. For the both methods, the designer can specify a required closed-loop degree of stability. 
The genetic algorithm represents an optimisation procedure, where the minimization of cost function 
comprises the closed-loop simulation of the control process and a selected performance index 
evaluation. Control performance indices corresponding to robust controllers designed for several 
required closed-loop stability degree are compared in several working points. 

2 Robust controller design  
2.1 Robust Controller design using the Edge Theorem 

Consider an affine model of the plant in the form: 
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where iii qqq ,∈  are uncertain coefficients. The coefficients depend linearly on uncertain parameter 

vector [ ]p
T qq ,...,1=q ; the parameters qi vary within a p - dimensional box  

 { }piqqq iii ,...,1,,: =∈= qQ . (2) 

Consider 
ii qq =  or ii qq = ; then we obtain p2  transfer functions with constant coefficients; 

inserting them to the vertices of a p - dimensional polytope, the transfer function (1) describes a so-
called polytopic system.  

Consider the controller transfer function in the form 
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where F1(s) and F2(s) are polynomials with constant coefficients. Then the characteristic polynomials 
with the polytopic system are  
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or in a more general form 
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Theorem 1 (Edge Theorem) 

The polynomial family (5) is stable if and only if the edges of Q are stable. 

 

A simple stability analysis method for families of polynomials (edges of Q) is given in the 
following theorem. 

 

Theorem 2 (Bialas) 

Let ( )a
nH  and ( )b

nH  be the Hurwitz matrices corresponding respectively to 
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The family of polynomials 
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is stable if and only if:  

1) ( )spb  is stable 

2) the matrix ( )( ) ( )a
n

b
n HH

1−
 has no nonpositive real eigenvalues. 

 

Using the Edge Theorem, the controller is designed for the 4 vertices of the polytopic system, 
e.g. using the Neymark D-partition method that guarantees required closed-loop degree of stability. 
Then, stability of each edge of the box Q is checked by e.g. the Bialas Theorem. If any of the edges is 
unstable, new controller coefficients are to be designed. 



2.2 Robust controller design using the Small Gain Theorem 
Consider a perturbed plant with unstructured additive uncertainty in the form 

 ( ) ( ) ( )sGsGsG nomp ∂+=  (8) 

where ( )sGnom  is the nominal model and ( )sG∂  are additive uncertainties. 

The nominal model can be obtained e.g. by N identifications of the plant (in N working points) 
by taking mean values of the nominator and denominator coefficients, respectively: 
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For each ω  the uncertainties are found by substituting αω −= js , where α  is the required 
stability degree: 
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Theorem 3 (Small Gain Theorem) 

Assume that the open-loop system is stable. The closed-loop system is stable if and only if the 
open-loop magnitude satisfies 

 ( ) ( ) 1<ωω jGjG pR , for ∞∈ ,0ω  (11) 

 

Theorem 4  

Consider an auxiliary characteristic polynomial in the form 
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Assume that the open-loop system (nominal model and controller) and the auxiliary 
characteristic polynomial (12) are stable. Then closed-loop characteristic polynomial 
( ) ( ) ( )sGsGsp Rp+=1  with unstructured additive uncertainties (8) is stable if and only if the following 

condition holds: 
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Condition (14) is verified graphically. The robust controller design using Small Gain Theorem 
is realized in the following steps: 

1. Specify the closed–loop system magnitude corresponding to the transfer function:  
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If the nominal model is of second order then ( )
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is a PID controller. 

2. Choose the numerator of ( )sW  equal to the numerator of nomG  

3. Choose ab >  and design the robust controller so that (14) is satisfied. 
  

2.3 Robust controller design using the Genetic Algorithm 
Consider c = {c1, c2, … , cq} to be the set of designed controller parameters and let s = {s1, s2, …, 

sp} is the set of parameters of the controlled system. During the operation of the plant, the parameters 
si can vary within some uncertainty domain 

 pisssS iii ,...,2,1 ;  : max,min, =≤≤   (16) 

where si,min and si,max are the minimum and maximum possible values of the i-th system parameter, 
respectively. Consider W different (physical) working points of the controlled process, defined by 
different vectors s, which are to be controlled by the robust controller. For that case consider the cost 
function in the additive form 
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comprising performance evaluation (for instance (18)) in all W working points. It is also recommended 
to include the measured noise from the real system or other possible disturbances or expected 
situations in the simulation model. Note, that alternatively to the set of W defined physical working 
points we can use a set of 2p system parameter vectors located in the vertices of a polytope 
representing bounds of the parameter space S [5, 10]. 

Alternative to the previous method, the following method can be considered [11] for the 
working points selection. In each generation of the GA, n random working points (for all 
chromosomes of the population the same ones) are generated i.e. n vectors (say n=100) of system 
parameters s become random values from the domain S. 

The controller design principle is actually an optimization task - search for such controller 
parameters from the defined parameter space, which minimize the performance index. The cost 
function (fitness) is a mapping Rn→R, where n is the number of designed controller parameters. The 
cost function can to represent sum of absolute control errors (SAE) in following form:  
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where w is reference variable, y is controlled output, e is control error and N is number of patterns. 
Fitness is represented by the cost function or in the case of control, by the modified cost function, 
which can be penalized for example by derivation of process output y or by saturation of control action 
u. Modified cost function is in following form: 
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where uc is control action from controller in front of saturation and α, β are weight constants. 

The evaluation of the cost function consists of two steps. The first step is the computer 
simulation of the closed-loop time-response, and the second one is the performance index evaluation. 

Genetic algorithms are described in e.g. [3-11] and others. Each chromosome represents 
a potential solution, which is a linear string of numbers, whose items (genes) represent in our case the 
designed controller parameters. Because the controller parameters are real-number variables and in 



case of complex problems the number of the searched parameters can be large, real-coded 
chromosomes have been used. 

Without loss of generality let us consider a PID controller with feedforward structure, described 
in the continuous time domain by the equation (20), where P, I, D are controller parameters and t is a 
time. 

 ( ) ( ) ( )
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The searched PID controller parameters are P∈R+, I∈R+, D∈R+. The chromosome 
representation in this case can be in form ch={P,I,D}. 

A general scheme of a GA can be described by following steps (Figure 1):  

1. Initialisation of the population of chromosomes (set of randomly generated chromosomes). 

2. Evaluation of the cost function (fitness) for all chromosomes. 

3. Selection of parent chromosomes. 

4. Crossover and mutation of the parents → children. 

5. Completion of the new population from the new children and selected members of the old 
population. Jump to the step 2. 

 
Figure 1: Block scheme of the used genetic algorithm 

A block scheme of a GA-based design is in Figure 2. Before each cost function evaluation, the 
corresponding chromosome (genotype) is decoded into controller parameters of the simulation model 
(phenotype) and after the simulation the performance index is evaluated. 

 
Figure 2: Block scheme of the GA-based controller design 



3 Simulation results for robust PID controller design 
The comparison of methods is illustrated by the robust controller design for two linear systems 

with uncertain parameters. The transfer functions of system A with uncertain parameters is in the 
following form: 
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where b0 is (0.5 – 4), a2 is (0.05 – 1), a1 is (0.45 – 2), control action u is saturation in range (-10, 10). 

 

The transfer functions of system B with uncertain parameters is in the following form: 
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where b1 is  (-0.1 – 0.3), b0 is (1 – 5), a2 is (1 – 4), a1 is (0.1 – 2), control action u is saturation in range 
(-10, 10). 

Step responses of systems A and B for boundary values of system parameters are depicted in 
Figure 3. 

0 5 10 15 20 25
0

1

2

3

4

5

6
Step Response

Time (sec)

A
m

pl
itu

de

 
0 50 100 150 200

0

1

2

3

4

5

6

7

8

9

Step Response

Time (sec)

A
m

pl
itu

de

 
Figure 3: Step responses of systems A and B for boundary values of system parameters 

Based on the design methods of robust controller described in the previous chapter, were 
designed of PID controller parameters for systems A and B. The proposed PID controller parameters 
are in Table 1. 

TABLE 1: CONTROLLER PARAMETERS 

System A  System B Method 

P I D P I D 

Edge 5 8 2 5.5 3 4 

SGT 5.4 4.4 2.3 0.0705 0.0671 0.1678 

GA 16.1502 3.7161 2.7860 14.6053 1.4754 4.7974 
 

The proposed Statistical robustness measure (SRM) is based on statistical evaluation of a set of 
(more than 1000) closed-loop simulation experiments with randomly generated system parameters 
from the parameter box [11]. The SRM can be expressed by a scalar value calculated as 

 ∑=
=

N

i
iJ

N
SRM

1

1   (21) 

where N is the number of closed-loop simulation experiments and J is a selected performance index 
(18). In Table 2 the performance indices for selected methods in 1000 randomly generated system 



parameters from the parameter box are computed. Statistical robustness measure (SRM) according to 
equation (21), average values of overshoot and settling time are compared. Smaller values of the 
performance index represent a better closed-loop behavior. A more transparent evaluation of this 
experiment represents the use of the probability density function (Fig.6) (the probability vs. the 
performance index). The control performance is better for such controllers, for which the density 
function is located to the left within the horizontal axis range. 

TABLE 2: CRITERION CONTROL QUALITY VALUES 

System A  System B Method 

SRM Overshoot 

[%] 

Settling 
time [s] 

SRM Overshoot 

[%] 

Settling 
time [s] 

Edge 78.623 30.74 4.68 117.264 22.18 6.12 

SGT 72.283 16.87 4.26 642.918 3.33 30.86 

GA 32.655 3.57 3.04 55.155 5.49 4.31 

 

The comparison of closed loop responses of system A (8 - boundary values of system 
parameters) for the genetic algorithm (GA) and Small Gain Theorem (SGT) design method are shown 
in Fig.4. 
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Figure 4: Comparison of closed loop responses of system A (8 system parameters) for the genetic 

algorithm and Small Gain Theorem design method 

The comparison of closed loop responses of system B (16 - boundary values of system 
parameters) for the genetic algorithm (GA)  and Edge Theorem design method are shown in Fig.5. 
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Figure 5: Comparison of closed loop responses of system B (16 system parameters) for the genetic 
algorithm and Edge Theorem design method 



 

The probability of density functions for all methods are depicted in Fig.6. 
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Figure 6: Probability of density function of performance index (SAE - sum of absolute control error) 

 

4 Conclusion 
The main aim of this paper has been to design robust controllers using Edge Theorem, Small 

Gain Theorem and genetic algorithm for uncertain SISO system. The comparison of these methods 
was illustrated by the robust controller design for two linear systems with uncertain parameters. For 
both systems better design of robust controller was realized using genetic algorithm. Design of robust 
controller using genetic algorithm provided better values of performance indexes in Table 2 and also 
density function of performance index had better shape. The design methods based on the Edge 
Theorem and the Small Gain Theorem guarantee the required closed-loop stability degree. Method 
based on genetic algorithm does not guarantee closed-loop stability, which should be verified by the 
statistical test in many (more than 1000) work points. 
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