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Abstract 

Selected patients with refractory epilepsy can benefit from surgical treatment. The main purpose of 

presurgical examination is to identify and delineate epileptogenic areas of the brain which should be 

removed. Epileptogenic areas are determined according to the spatial distribution of seizure onsets, 

interictal epileptiform discharges or high-frequency oscillations. Specificity of interictal epileptiform 

discharges to mark epileptogenic tissue is decreased by the fact, that they are also observed outside the 

epileptogenic areas. To improve the localizing yield of interictal discharges, identification of specific 

features of the discharges generated only within epileptogenic region is required. The main aim of this 

project was to develop self-clustering algorithm which will discriminate distinct populations of 

interictal epileptiform discharges according to the morphology of their waveforms. First step of the 

developed algorithm extracts nine basic morphological features of each interictal epileptiform 

discharge detected in band-pass filtered (2-60 Hz) intracranial recordings. Principal component 

analysis is applied on extracted features to reduce their dimension. Only the first principle components 

with cumulative variance of 80 % or above are used for clustering. Gaussian Mixture Distribution 

method is utilized to assign each discharge to appropriate morphological cluster. Results of the 

clustering algorithm are displayed in the form of cortical maps together with medians of the clustered 

discharge waveform. Developed algorithm was tested in the model of intracranial EEG signal and on 

data recorded in patients who underwent intracranial monitoring. Results demonstrate the ability of the 

algorithm to separate interictal epileptiform discharges according to their morphological features.    

 

1 Introduction 
Epilepsy affects approximately 0.5-1 % of population in developed countries and in one third of 

patients it becomes refractory to antiepileptic drugs. Selected patients with refractory epilepsy can 

benefit from surgical treatment. Principle of epilepsy surgery is to remove epileptogenic brain areas 

which are involved in seizure genesis. Currently, we lack parameter which would reliably identify 

epileptogenic brain tissue. Therefore, resection margins are determined only indirectly based on the 

information about location of epileptogenic lesion and spatial distribution of epileptiform 

electrographic phenomena. Interictal epileptiform discharges (IEDs) represent electrographic 

phenomenon generated in epileptic brain. Their spatial distribution often overlaps with areas of 

endogenous epileptogenicity. Ability to identify specific features of IEDs generated by epileptogenic 

brain would improve localization of the brain areas which should be included in the resection to 

achieve seizure freedom. 

The main aim of this project was design and implementation of unsupervised offline algorithm 

which separates IEDs into clusters according to the morphological features of their waveforms.  



 

Figure 1: Example of intracranial recordings which contain IEDs. One of the main features of IEDs is their ability to 

they propagate through the brain. This example shows four IED events (red box) with various spatial pattern of 

propagation. Note also variation of the morphology of each IED waveform. 

 

2 Methods 

2.1 Data acquisition 

Data were recorded in patients with refractory epilepsy who underwent invasive exploration at 

University Hospital Motol in Prague. Signals from subdural and/or depth macroelectrodes were 

amplified, filtered using aliasing filter at 1/3 of sampling frequency and sampled at frequency 1000 

Hz. Data were recorded in reference mode. For the purpose of the clustering they were converted to 

bipolar mode. 

 

2.2 IEDs detection and signal pre-processing 

To automatically detect IEDs we used Hilbert transform detector [1] which was developed in the 

previous project. Signals were band-pass filtered (2-60 Hz) to preserve signal with spectral 

information which corresponds to spectral composition of IED. Filtering procedure included following 

steps: high-pass (2 Hz), biquad notch (50 Hz) and low pass (60 Hz) filtration. High pass filtration 

(> 2 Hz) involved two-step resampling to achieve sharp cut-off frequency characteristics of the filter. 

Signal was decimated to 10 Hz using Matlab resample function (length of FIR filter was proportional 

to half of the original sampling frequency). Then Chebyshev Type II low pass filter of 10
th
 order with 

cutoff frequency of 2 Hz (+ 0,5 Hz crossband with attenuation of 70 dB) was applied. Using this 

approach, we obtained low-resolution isoline (low frequency interference) of the processed signal. The 

isoline was then interpolated to default sampling frequency of the original one. During the last step 

isoline was subtracted from original signal. Biquad filter was used to eliminate 50 Hz additive main 

hum and its higher harmonic frequencies. Poles of the biquad filter lied on a radius of 0.98 and zeros 

on a unit circle of Z-plane. Chebyshev Type II low pass filter with cutoff frequency 60 Hz (+ 5 Hz 

crossband with attenuation of 70 dB with maximum permissible passband loss 5 dB) was used as a 

low pass filter. Phase delay introduced by application of above mentioned filters was compensated by 

zero-phase digital filtering. 

 



2.3 Feature extraction 

Segments containing detected IED were extracted from the pre-processed signals. Segment size 

was 600 ms; 150 ms before and 450 ms after the time index of IED detection. Parameters of the 

segment size were selected so that each segment contains entire IED waveform, i.e. spike and the 

following wave. IED waveform can be described using myriad of features from time and/or frequency 

domain. We selected nine basic features and for each IED we determined values of these features. 

 

1) Polarity 

Polarity was determined from the peak of the highest absolute value of amplitude in window 

with dynamic width. Time index of detected event represents midpoint of each dynamic window. If no 

peak was found, width of the window was increased equally to both sides. For feature extraction we 

used IEDs with polarity normalized to positive value. 

2) Mean value [2] 
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Where N is number of samples and x is amplitude of given sample. 

3) Curve length [2, 3] 
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4) Accumulated energy [2] 
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5) Teager’s energy [2, 3] 

Average nonlinear energy which represents a measure of energy proportional to both: signal 

amplitude and frequency. 
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6) Entropy of the squared and normalized Teager’s Energy [3] 

Square of the signal normalized by its sum makes a pseudoprobability mass function (6). Entropy 

is estimated from this function (7) where n is index of processed sample.  
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7) Spectral centroid [3] 

This parameter estimates frequency which corresponds to the “center of mass” of the spectrum. 

Where f is vector of frequency bands, S is vector of computed energy bands of same length and fs is 

sampling frequency. 

    
∑    ( )
  

 ⁄

   

∑ 
 (8) 

8) Standard deviation of the spectral centroid 
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9) Global/average-local peak ratio [3] 
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Vector G describes set of local maxima and g* is global maximum. This parameter is useful to 

discriminate artifacts. 

2.4 Clustering 

Principal component analysis (PCA) 

Clustering of large number of detected IEDs according to nine parameters (features) represents 

processing step which is computationally extremely demanding. Thus we have to reduce 

dimensionality of the parameters’ vector space by application of PCA. Result of PCA represents 

matrix of the same size as the original one (columns corresponds to parameters and rows to segments). 

Parameters are substituted with principal components which are ranked according to their variance. 

Only the principle components with cumulative variance of 80 % or above were used for subsequent 

clustering. Example of eigenvectors in space is shown in Figure 2.  

 

Figure 2: Example of PCA eigenvectors 



Gaussian Mixture Distribution (GMD) 

GMD is a multivariate distribution that consists of a mixture of one or more multivariate 

Gaussian distribution components (clusters). This clustering process uses an EM (Expectation 

Maximization) algorithm to obtain maximum likelihood estimates of each Gaussian mixture 

distribution component. The number of components for a given GMD is fixed and it must be 

determined in advance. Unfortunately, there is no established method how to a priori estimate number 

of components. Therefore, for each set of signals we calculated distribution models with the number of 

components ranging from one to ten [4]. 

 

Figure 3: Example of GMD with four clusters of first two principal components 

To identify optimal cluster number, we applied on the generated distribution models three 

different methods of information criterion estimation: methods of Calinski-Harabasz [5], Krzanowski-

Lai index [6] and Hartigan’s method [7]. Unfortunately, these methods do nto provide consistent 

results and optimal number of clusters had to be visually verified. Only clusters that contain more than 

10 % of IEDs in the largest cluster were considered as significant [8]. These clusters represent output 

(result) of the entire clustering procedure. Schematics of the clustering algorithm is shown in Figure 4. 

 

Figure 4: Schematics of proposed clustering algorithm 



3 Results 

The clustering algorithm was applied to datasets obtained from two patients who underwent 

invasive exploration as a part of their presurgical examination. Patient A is five years old boy with 

intractable frontal lobe epilepsy due to tuberous sclerosis complex and patient B is eleven years old 

boy with multi-focal epilepsy due to meningoencephalitis. Results of the clustering were incorporated 

into the cortical maps, which contain information about position of implanted electrodes. These 

diagrams facilitate clinical interpretation of the clustering results together with other clinical data. 

Example of cortical maps of patient B and its rewritten form is in Figure 5. 

   

Figure 5: Schematics of electrode placement (a) in patient B and its computerized version (b). 

Designed algorithm was able to identify multiple morphological clusters of IEDs in both patients. 

Three methods of optimal cluster number estimation were tested. Results showed high variability of 

estimated optimal cluster number Average number of clusters was 5.7±2.6 (median 5). Calinski-

Harabasz methods (three clusters in case A, four clusters in case B) provided the best estimates if 

compared with visual assessment. One cluster in patient A and two clusters in patient B contained 

artifact and they were visually excluded.  

 

Figure 6: Clustering algorithm applied in patient A. Result demonstrated existence of two relevant clusters C1 and C2 

that contain 50.7% and 47.5 % of  IEDs respectively. Number of IED in each electrode is visualized in colored cortical 

maps (a). Red contour represent surgically removed area, green rectangle covers seizure onset zone marked by 

neurologists. Median waveform of all IEDs from each cluster (b) (64361 realizations of C1 and 60343 of C2). 

3D-histograms (c) show variability of clustered IEDs. 

a) b) 



 

Figure 7: Clustering algorithm applied in patient B. Result demonstrated existence of three relevant clusters C1, C2 

and C3 that contain 44.5 %, 43.2 % and 11.5 % of  IEDs respectively. Number of IED in each electrode is visualized 

in colored cortical maps (a). Red contour represent surgically removed area, green rectangle covers seizure onset zone 

marked by neurologists. Median waveform of all IEDs from each cluster (b) (138430 realizations of C1, 134610 of C2 

and 35910 of C3). 3D histograms (c) show variability of clustered IEDs. 

 

4 Discussion 
Developed algorithm is able to identify and separate IEDs with different waveforms. Clinical 

significance of the morphological clustering needs to be determined in future. Our results suggest that 

morphological clustering can provide additional information about functional organization of the brain 

areas generating interictal discharges. Previous study showed that IEDs can be reliably clustered 

according to their spatial propagation profile [1]. This method is able to identify distinct clusters of 

IEDs and regions of the brain from which they originate. However, spatial clustering technique fails to 

discriminate clusters with spatial overlap. Morphological clustering can provide tool how to separate 

spatially overlapping clusters according to the morphology. 

Morphological clustering technique assumes that intracerebral propagation of interictal 

discharges through has linear filter properties (linear transfer function) and does not result in alteration 

of morphology of propagating IEDs. It has been shown that linear methods can be successfully applied 

in studies focused on the transmission of the signals through neural networks. However, there is also 

evidence that propagation pathways have nonlinear features. To determine properties of IEDs 

propagation and quantification of its transfer function will require experimental verification. 



Designed method separates epileptiform activity according to the parameters of their waveforms. 

It has a potential to be used for unsupervised spike sorting tool. Purpose of spike sorting is to group 

spikes (action potentials) into clusters based on the similarity of their shapes, when each cluster 

correspond to action potential firing from single neuron [9]. 
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