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Summary
In this paper, a new methodology is proposed for longitudial headway control design

of platoons of automotive vehicles. It is based on the generalization of the Inclusion
Principle to nominally linear dynamic systems with time-varying uncertain system pa-
rameters described in the state space. No statistical information about the uncertainty
is required, only its bound is supposed to be known. Necessary and suÆcient condi-
tions for extensions and for contractibility of linear controllers are given as a necessary
theoretical background. Expansions of input, state and output spaces are considered.
Numerical simulatuion results show that the proposed methodology provides a reliable
tool for systematic control design of longitudial vehicle controllers in general.

1. INTRODUCTION

A complex system is usually considered as a set of interconnected systems. The
motivating reasons and the advantages o�ered by such approach when analyzing and
designing controllers have been discussed by many authors. They are surveyed for in-
stance in Bakule and Lunze (1988) and �Siljak (1991). The diÆculties generated by
particular features of complex systems such as high dimensionality, information struc-
ture constraint and uncertainty have motivated the development of new methodologies,
such as decomposition, decentralization and robustness. These methodologies have been
developed systematically since early seventies.

Overlapping decompositions are an useful mean of designing decentralized con-
trollers, mainly in cases when disjoint decompositions fail. The controller design us-
ing the Inclusion Principle (Ikeda and �Siljak, 1980; �Siljak, 1991; Bakule et al., 2000a,
2000b) starts with expanding input, state and output spaces of the original system with
overlapping subsystems into expanded larger spaces in which these subsystems appear
disjoint. Decentralized control laws are designed in these larger spaces and then con-
tracted into original spaces for implementation. It concerns both large and small scale
systems. The Inclusion Principle has been adapted to stochastic systems, reduced-order
design, dynamic output feedback, hereditary systems, time-varying systems, power and
mechanical systems, longitudial headway control (Iftar, 1990; �Siljak, 1991; Bakule and
Rodellar, 1995; Stankovi�c et al., 1998).

This paper deals with a new extension of the Inclusion Principle to uncertain dy-
namic systems. The motivation for such generalization lies in the fact that, though the
concept of extension has been introduced as an e�ective tool for constructing contractible
controllers without any structural constraint when implementing expanded controllers
to original systems (Iftar and �Ozg�uner, 1990), it has not been specialized to uncertain
systems up to now. Stabilization of uncertain systems via deterministic control derived
from a constructive use of Lyapunov stability theory lies in one of the important method-
ology for robust control. Ikeda and �Siljak (1986) extended the expansion/contraction
process to input, state and output inclusion in the state space. Iftar (1993) presented



dynamic output feedback controller design for linear time-invariant systems.
The objective of this paper is to present a general methodology for decentralized

stabilization using overlapping decompositions without any restrictions on constructing
contractible linear controllers using extensions and including subsystems with overlap-
ping input, state and output spaces for uncertain nominally linear systems, which pro-
vides a reliable tool for longitudial control design of platoons of automotive vehicles.
As the author's knowledge, this problem has not been solved yet. The presented solu-
tion enables to construct block tridiagonal feedback controllers for uncertain systems.
Numerical simulation results illustrate the advantages of this methodology.

2. THE PROBLEM

Consider the uncertain time-varying systems described by

S : _x = (A+

irX
i=1

Airi(t))x+ (B +

isX
i=1

Bisi(t))u;

y = (C +

ivX
i=1

Civi(t))x;

(2:1)

and

Se : _xe = (Ae +

ireX
i=1

Aeirei(t))xe + (Be +

iseX
i=1

Beisei(t))ue;

ye = (Ce +

iveX
i=1

Ceivei(t))xe;

(2:2)

where the n dimensional vector x represents the states, u is the m dimensional input
vector and y is the p dimensional output vector of the system (2.1). A;Ai; B;Bi; C; Ci

are constant matrices of appropriate dimensions. A;B;C and Ai; Bi, Ci correspond
with nominal and uncertain part of the system S, respectively. Denote from now on

�A(r(t)) =
Pir

i=1Airi(t); �B(s(t)) =
Pis

i=1Bisi(t);�C(v(t)) =
Piv

i=1Civi(t) time-
varying perturbation matrices. r = (r1; :::; rir); s = (s1; :::; sis), v = (v1; :::; viv) are

supposed to be �xed but unknown Lebesgue measurable functions r : IR! Rr � IRir ; s :
IR! Rs � IRis; v : IR! Rv � IRiv ; where Rr; Rs; Rv are compact bounding sets of the
form

Rr = fr : r 2 IRir ; jrij � ri; i = 1; :::; irg

Rs = fs : s 2 IRis; jsij � si; i = 1; :::; isg;

Rv = fv : v 2 IRiv ; jvij � vi; i = 1; :::; ivg;

(2:3)

Analogously, the ne dimensional vector xe represents the states, ue is the me dimen-
sional input vector and ye is the pe dimensional output vector of the system (2.2).
Ae; Aei; Be; Bei; Ce; Cei are constant matrices of appropriate dimensions, where Ae; Be,
Ce and Aei; Bei; Cei correspond with nominal and uncertain part of the system Se, re-

spectively. Further, denote �Ae(re(t)) =
Pire

i=1Aeirei(t);�Be(se(t)) =
Pise

i=1Beisei(t),

�Ce(ve(t)) =
Pive

i=1Ceivei(t) time-varying perturbation matrices. re = (re1; :::; reire),



se = (se1; :::; seise), ve = (ve1; :::; veive) are supposed to be �xed but unknown Lebesgue

measurable functions re : IR! Rre � IRire; se : IR! Rse � IRise; ve : IR! Rve � IRive;

where Rre; Rse; Rve are compact bounding sets of the form

Rre = fre : re 2 IRire; jreij � rei; i = 1; :::; ireg;

Rse = fse : se 2 IRise; jseij � sei; i = 1; :::; iseg;

Rve = fvi : ve 2 IRive; jveij � vei; i = 1; :::; iveg:

(2:4)

The objective is to present a general theory of feedback control design for systems
described by Eqs.(2.1) and (2.2) using overlapping decompositions.

Denote from now on the matrices Au(t) = A+�A(r(t)); Aue(t) = Ae+�Ae(re(t));
Bu(t) = B +�B(s(t)); Bue(t) = Be +�Be(se(t)) and Cu(t) = C +�C(v(t)); Cue(t) =
Ce +�Ce(ve(t)).

3. BACKGROUND - THEORY

The way of the solution proceeds as follows. First, the expansion process between
systems S and Se is presented in terms of extension and disextension. Second, conditions
for contractible controllers with arbitrary feedback structure are given. Third, overlap-
ping decompositions for systems of the form (2.1),(2.2) are presented for a considered
prototype case and relations between rank 1 uncertainty matrices of systems S and Se
are given for this case.

3.1. EXTENSION/DISEXTENSION OF SYSTEMS

Consider the transformation matrices between the systems S and Se satisfying the
following assumption.
Assumption A1: xe = Tx; ue = U+u; ye = Gy; x = T+xe; u = Uue; y = G+ye; T

+T =
In; UU

+ = Im; G
+G = Ip; rank(T ) = n; rank(U) = m; rank(G) = p: I(:) denotes the (:)

dimensional identity matrix.
De�nition 1: The system Se is an extension of the system S, and S is a disextension

of Se, if there exist transformations T; U;G satisfying A1 such that for any initial state
x(0) and for any input ue(t) 2 IRme; t � 0; the relations xe(0) = Tx(0); u(t) = Uue(t)
imply that xe(t) = Tx(t); ye(t) = Gy(t) for all t � 0:

Necessary and suÆcient conditions for the extension of linear time-invariant system
are given, for instance, in Iftar (1993). We extend these conditions for uncertain systems
by the following theorem.
Theorem 1: The system Se is an extension of the system S, or equivalently S is a
disextension of Se, if and only if there exist full-rank transformation matrices T; U;G
satisfying (3.1) such that

(Ae +�Ae(re(t)))T = T (A+�A(r(t)));

T (B +�B(s(t)))U = Be +�Be(se(t));

G(C +�C(v(t))) = (Ce +�Ce(ve(t)))T; 8t � 0;

(3:4)

for any uncertain functions r; re; s; se; v; ve satisfying (2.3) and (2.4).
A logical consequence of Theorem 1 is a suÆcient condition as follows.

Theorem 2: The system Se is an extension of the system S, or equivalently S is a
disextension of Se, if and onlu if there exist full-rank transformation matrices T; U;G
satisfying (3.1) such that



AeT = TA; TBU = Be; GC = CeT;

�Ae(re(t))T = T�A(r(t)); �Be(se(t))T = T�B(s(t));

G�C(v(t)) = �Ce(ve(t))T; 8t � 0;

(3:5)

for any uncertain functions r; re; s; se; v; ve satisfying (2.3) and (2.4).
Suppose that the matrices of systems S and Se can be related as follows:

Aue(t) = TAu(t)T
+ +Mu(t); Bue(t) = TBu(t)U +Nu(t); Cue(t) = GCue(t)T

+ + Pu(t);
(3:7)

where Mu(t); Nu(t); Pu(t) are complementary matrices. For Se to be an extension of
S, these complementary matrices must satisfy certain conditions given by the following
theorem.
Theorem 3: Suppose that the matrices in the systems S, Se and the transformation
matrices de�ned by Eq.(3.1) are related as given by Eq.(3.7). Then the system Se is an
extension of the system S if and only if Mu(t)T = 0; Nu(t) = 0; Pu(t)T = 0 for all t � 0
and for uncertain functions r; re; s; se; v; ve satisfying (2.3) and (2.4).

Consider now the matrix Mu(t) decomposed in the form Mu(t) =M +Md(t), where
M corresponds with the nominal part of the system S andMd(t) with its uncertain part.
Similarly, consider Pu(t) = P + Pd(t). We can formulate the following condition.
Theorem 4: Suppose that matrices in the systems S, Se and the transformation matri-
ces de�ned by Eq.(3.1) are related as given by Eq.(3.7). Then the system Se is an exten-
sion of the system S if and only if MT = 0; PT = 0;Md(t)T = 0; Nu(t) = 0; Pd(t)T = 0
for all t � 0 and for uncertain functions r; re; s; se; v; ve satisfying (2.3) and (2.4).

3.2. CONTRACTIBILITY OF CONTROLLERS

Consider feedback control now. Since we deal with a stabilization problem, we
consider static control laws in the form u = Fy and ue = Feye for the systems S and
Se, respectively.

We are interested in designing control laws for the extended system that can be
implementable into the original system. The concept of contractibility of controller Fe
into F is de�ned now as a concept contributing to this objective.
De�nition 2: The control law ue = Feye is contractible into the control law u = Fy

if there exist full rank transformations T; U satisfying A1 such that, for any initial
states x(0); xe(0) and controls u; ue verifying xe(0) = Tx(0); u(t) = Uue(t), the relation
Fy(t;x(0); u) = UFeye(t;xe(0); ue) holds.

Note here that the use of any inclusion concept other than extension can result in
non contractible controller (Iftar and �Ozg�uner, 1990; Ikeda and �Siljak, 1986). SuÆcient
conditions for the contractibility of the control laws using the extension de�ned in the
previous section are given by the following theorem.
Theorem 5: Suppose that the system Se in (2.2) is an extension of the system S in
(2.1). The control law ue = Feye is contractible to the control law u = Fy in the system
S if FC = UFeGC;F�C(v(t)) = UFeG�C(v(t)) for all t � 0 and for uncertain function
v satisfying (2.3).

Stability in the context of extension of the systems S and Se in (2.1) is determined
by the following theorem.
Theorem 6: If Se is an extension of S and Se is a stable (respectively asymptotically
stable) system, then S is a stable (respectively asymptotically stable) system.



Thus the (asymptotic) stability of the system Se guarantees the (asymptotic) sta-
bility of the original uncertain system. Though the relation is presented for open{loop
systems, it also holds for closed{loop systems provided that both systems are in exten-
sion/disextension relation.
Theorem 7: If Se in (2.2) is an extension of S in (2.1) and control law ue = Feye is
contractible to u = Fy, then the closed{loop system

Sec : _xe = (Ae +�Ae(re(t)) + (Be +�Be(se(t)))Fe(Ce +�Ce(ve(t))))xe

= (Aec +

iecrX
i=1

Aecireci(t))xe
(3:14)

is an extension of the closed{loop system

Sc : _x = (A+�A(r(t)) + (B +�B(s(t)))F (C +�C(v(t))))x

= (Ac +

icrX
i=1

Acirci(t))x:
(3:15)

4. HEADWAY CONTROL OF A PLATOON OF VEHICLES - SIMULA-
TION EXPERIENCE

We consider the error regulation problem of a string of moving vehicles by Ikeda and
�Siljak (1986). They consider a string of four vehicles as a representative situation for
strings of any length. The motion of each vehicle is described by two states: position and
velocity. The equation of motion of the string can be written in terms of the deviations
from a given nominal distance between adjacent vehicles and the deviations from a
nominal string velocity. The model is given in normalized (dimensionless) distances,
velocities, input forces and nominal model parameters. All states are supposed to be
available as outputs. In contrast to that work, we consider here a string of moving
vehicles with uncertain model parameters and design a static output feedback controller.
Formulation: Consider the system (4.1) described in accordance with (2.1),(2.3) with
ir = is = 4 and iv = 1. Uncertainty function ri denotes the deviation from the nor-
malized reciprocal value of the mass of the i-th vehicle. This mass enters equally into
the input matrix (Bakule and Lunze, 1988). Thus ri(t) = si(t). vi is the sensor un-
certainty in the distance between the 1st and the 2nd vehicles. All uncertainties are
supposed to be maximally 13% of the parameter deviations from their nominal val-
ues. Thus, their bounds on uncertainty of the original system are selected as follows:
r1 = r2 = r3 = r4 = v1 = 0:13:

The normalized states are x = (w1; d12; w2; d23; w3; d34; w4)
T . wi denotes the veloc-

ity deviation of the i-th vehicle, di;i+1 is the distance between the i-th and (i + 1)-th

vehicles. The normalized control inputs are u = (u1; u2; u3; u4)
T , where ui is the force

applied to the i-th vehicle. The normalized outputs are y = (d12; w2; d23; w3; d34)
T :

The objective is to construct decentralized static output feedback controller.
Solution: The solution proceeds as follows: First, an overlapping decomposition is
de�ned by matrices satisfying A1. Second, local output static controllers are designed for
the extended system so that its nominal closed-loop system is stable. Third, uncertainty
bounds are computed for such stable system. The last step is to contract the controller
for the implementation on the original system. To illustrate the procedure, simulation
veri�cation is supplied.



A =

0
BBBBBBB@

�1 0 0 0 0 0 0
1 0 �1 0 0 0 0
0 0 �1 0 0 0 0
0 0 1 0 �1 0 0
0 0 0 0 �1 0 0
0 0 0 0 1 0 �1
0 0 0 0 0 0 �1

1
CCCCCCCA
; B =

0
BBBBBBB@

1 0 0 0
0 0 0 0
0 1 0 0
0 0 0 0
0 0 1 0
0 0 0 0
0 0 0 1

1
CCCCCCCA
;

C =

0
BBB@

0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 0

1
CCCA ; A1 =

0
BBBBBBB@

�1 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0

1
CCCCCCCA
;

A2 =

0
BBBBBBB@

0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 �1 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0

1
CCCCCCCA
; A3 =

0
BBBBBBB@

0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 �1 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0

1
CCCCCCCA
;

A4 =

0
BBBBBBB@

0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 �1

1
CCCCCCCA
; B1 =

0
BBBBBBB@

1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

1
CCCCCCCA
;

B2 =

0
BBBBBBB@

0 0 0 0
0 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

1
CCCCCCCA
; B3 =

0
BBBBBBB@

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 1 0
0 0 0 0
0 0 0 0

1
CCCCCCCA
; B4 =

0
BBBBBBB@

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 1

1
CCCCCCCA
;

C1 =

0
BBB@

0 1 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0

1
CCCA :

(4:1)

Overlapping decomposition is considered for the string of four vehicles into three
nonoverlapping systems in extension in accordance with Ikeda and �Siljak (1986). Using
the matrixA = (aij) in (4.1), overlapping appears in its elements a33 and a55 as indicated
by the broken lines in (4.1). In our case, the original system is considered as including
two di�erent overlapped parts. Therefore, the matrix A is considered as composed
of submatrices as follows: A = (Ai;j); i; j = 1; :::; 5; where dimA1;1 = dimA5;5 =
2 � 2; dimA2;2 = dimA3;3 = dimA4;4 = 1: Note that using this partitioning of A, the
overlapped parts are the submatrices A2;2 = a33 and A4;4 = a55: The same reasoning as



for matrix A holds for all uncertainty matrices Ai given by (4.1). In matrix B = (bij)
in (4.1) the overlapping appears in elements b32 and b53. No partitioning is necessary
because the complementary matrix for B is zero. Denoting C = (cij); overlapping
appears in elements c23 and c45. Consider its partitioning into submatrices as follows:
C = (Ci;j); i = 1; :::; 7; j = 1; :::; 5, where dimC1;1 = dimC5;5 = 1 � 2; dimC2;2 =
dimC3;3 = dimC4;4 = 1: Consider C1 in (4.1) partitioned in the same way as C. Denote

the complementary matrices Md(t) =
Pir

i=1Airi(t) and Pd(t) = P1v1(t) corresponding
to the structure of �A(t) and �C(t) in (2.1).With these partitioning, the transformation
matrices T; U;G and the complementary matrices can be described as follows:

T =

0
BBBBBBBBBBB@

1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 1 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 1 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1

1
CCCCCCCCCCCA

; U =

0
B@
1 0 0 0 0 0
0 0:5 0:5 0 0 0
0 0 0 0:5 0:5 0
0 0 0 0 0 1

1
CA ;

G =

0
BBBBBBB@

1 0 0 0 0
0 1 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 1 0
0 0 0 0 1

1
CCCCCCCA
; [:] =

0
BBBBB@

0 0:5[:]12 �0:5[:]12 0 0 0 0
0 0:5[:]22 �0:5[:]22 0 [:]24 �[:]24 0
0 �0:5[:]22 0:5[:]22 0 [:]34 �[:]34 0
0 �0:5[:]32 0:5[:]32 0 [:]44 �[:]44 0
0 �0:5[:]42 0:5[:]42 0 �[:]44 [:]44 0
0 0 0 0 �0:5[:]54 [:]54 0

1
CCCCCA

(4:2)
with [:] denoting the complementary matrices M;Mi; P , P1, where the submatrix [:]ij
means the (i; j)� th submatrix of the corresponding matrices A;Ai, C;C1, respectively.

Applying the transforms by (3.7), (4.2) on the system (2.1),(4.1), we get the matrices
Ae; Be; Ce; Ae1; Ae2; Ae3; Ae4; Be1; Be2; Be3; Be4; Ce1
Note that the expanded system is composed of three non-overlapped subsystems. The
uncertainty functions for the extended system are as follows: re1(t) = se1(t) = r1(t),
re2(t) = se2(t) = r2(t), re3(t) = se3(t) = r3(t), re4(t) = se4(t) = r4(t), ve1(t) = v1(t)
with the corresponding bounds.

Consider now the decentralized controller design for the nominal extended system.
This system has two uncontrollable modes, both in -1, and is observable. The original

system is controllable. It means that the extended system is stabilizable. Choose the

local feedback Fe = diag(Fe1; Fe2; Fe3); where Fe1 =

�
�0:1557 0:0702
0:1442 �0:1480

�
; Fe2 =�

0:9214 0:8217 �0:9155
�0:8849 �0:7789 0:8786

�
; Fe3 =

�
�0:15 �0:1248
�0:0007 0:1544

�
: The nominal closed-

loop for the extended system has the form _xe = Aecxe = (Ae +BeFeCe)xe;
where the matrix Aec has the eigenvalues: -0.1673, -0.5213, -0.5444, -0.8� 0.138, -1.0813,
-1, -1, -2.1403. Considering this pole placement as satisfactory, no dynamic compensator
is neccessary to stabilize the extended system using the decentralized feedback Fe.

Now, the closed-loop system has the form (3.14) with iecr = 7, where the matri-
ces Aec5; Aec6 occur from the relation �BeFe�Ce. Their values depend on Fe. The
uncertain variables are rec1(t) = r1(t); rec2(t) = r2(t); rec3(t) = r3(t); rec4(t) = r4(t),
rec5(t) = r1(t)v1(t); rec6(t) = r2(t)v1(t); rec7(t) = v1(t) with the corresponding bounds.



Fig. 1. String of moving vehicles - case 1: (|) velocities; (- - -) distances.

Fig. 2. String of moving vehicles - case 2: (|) velocities; (- - -) distances.



Fig. 3. String of moving vehicles - case 3: (|) velocities; (- - -) distances.

Fig. 4. String of moving vehicles - case 4: (|) velocities; (- - -) distances.



Applying now the condition (iii) of the Theorem by Zhou and Khargonekar (1987) on
the system (3.14) given by (4.1), (4.2) to �nd allowable bounds on uncertainty parameters
reci, we get jrecij < 0:1373 for i = 1; :::; 7:
Therefore, since the bounds for the extended system 0.13, it is stable with the feeback
(4.5), (4.6). By using Theorem 5, the contracted feedback for the original system has
the form

F =

0
B@
�0:1557 0:0702 0 0 0
0:1442 �1:0694 �0:8217 0:9155 0

0 0:8849 0:7789 �1:0296 �0:1248
0 0 0 0:0007 0:1544

1
CA : (4:3)

The nominal closed-loop system has the same eigenvalues as its extension but without
uncontrollable modes. They are: -0.1673, -0.5213, -0.5444, -0.8� 0.138, -1.0813, -2.1403.
The closed-loop system (3.15) is now de�ned by the corresponding matrices with icr = 7.

To illustrate this result by simulation consider four cases. The original system is
controlled by the feedback F as selected above for the same initial condition x(0) =
(5; 0; 0; 0; 0; 0; 0)T . These cases consider uncertainty functions as follows:

1) r1(t) = 0:13sin(t); r2(t) = 0:13sin(10t); r3(t) = 0:13sin(3t); r4(t) = 0:13sin(3t),
v1(t) = 0:13:

2) r1(t) = 0:13sign(sin(3t)); r2(t) = 0:13sin(10t); r3(t) = 0:13sin(3t), r4(t) =
0:13sin(3t), v1(t) = 0:13sign(sin(3t)):

3) r1(t) = 0:13sign(sin(3t)); r2(t) = 0:13sign(sin(10t)); r3(t) = 0:13sin(3t); r4(t) =
0:13sin(3t); v1(t) = 0:13sign(sin(3t)):

4) r1(t) = 0:13sign(sin(3t)); r2(t) = 0:13sign(sin(10t)); r3(t) = 0:13sign(sin(3t)),
r4(t) = 0:13sign(sin(3t)); v1(t) = 0:13sign(sin(3t)):
Fig.1, Fig.2, Fig.3 and Fig.4 show the responses for the cases 1, 2, 3 and 4,respec-
tively. The states in the Figures are denoted as x = (w1; d12; w2; d23; w3; d34; w4)

T =
(x1; x2; x3; x4; x5; x6; x7)

T . The responses are smoother in the �rst case, particularly
in the velocities of the second and the third vehicles. It corresponds with sinusoidal
change of the mass of the �rst vehicle, while this change is stepwise in the second case.
The fourth vehicle has suÆciently smooth velocity response. The case 4 is the worst
possible case with respect to uncertainties. The responses are asymptotically stable in
all considered cases.

5. CONCLUSIONS

A methodology for decentralized stabilizing controller design of uncertain nominally
linear dynamic systems using overlapping decompositions has been presented. Neccesary
and suÆcient conditions for extensions and for contractibility of controllers are given as
a necessary theoretical background.

With a design perspective, the methodology presented may be used through the
following steps: 1) Transformation of the original uncertain system to the expanded
uncertain system; 2) Design of a robust decentralized controller for the expanded system;
3) Contraction of this controller for its implementation on the original system.

This new methodology has been proposed for longitudial headway control design of
platoons of automotive vehicles. First, the control for a nominal linear system is designed
in the expanded space, and then the bounds of uncertanties guaranteeing the closed loop
system stability of uncertain system are computed and evaluated when comparing them
with the bounds given for the original system. Numerical simulation results show that



the proposed methodology provides a reliable tool for systematic design of longitudial
vehicle controllers in general.
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