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Abstract. This paper presents and compares two possible solution for floating point-like HW, based on a 32-

bit logarithmic ALU. We describe the implementation, parameters and the basic use of a non-pipelined ALU

and a 3stage-pipelined ALU. Both Virtex FPGA cores are encapsulated in function-like API interface

compatible with the Handel C 2.1 and the new DK1 tool from Celoxica. DSP designers can create optimized

VLIW program flow with 32bit FP data range and precision. Code can be source-code-debugged and

subsequently compiled from this high-level to the target Virtex FPGA.

Introduction

The complexity of the IEEE floating point implementation negatively affects the use of advanced DSP and

control algorithms in FPGA. We present two 32-bit logarithmic ALUs for Celoxica DK1 implementation path

and Virtex FPGA. Cores have been implemented  in the non-pipelined and in the  3-stage-pipelined versions.

Both cores implement all basic floating-point-like 32-bit logarithmic operations by representation of floating

point numbers as 32-bit integer (fixed point) logarithms [1].

The logarithmic number system (LNS) is well suited to the FPGA environment. The core takes just 8% of the

XILINX Virtex XCV2000E-6 device. Both cores  operates at 53MHz and implement all the basic operations of

logarithmic arithmetic (ADD, SUB, MUL, DIV and SQRT), with the covered data range and the precision equal

to or better than the standard IEEE 32-bit floating point used in new DSPs. See [3], [4], [5] for details.

We consider these cores as possible candidates for upcoming advanced embedded DSP applications based often

on orthogonal rotations (QR RLS, LATTICE, SVD).

See [2], [7] for details. This research is performed under the EU ESPRIT 33544 HSLA Long-term research

project, coordinated by the University of Newcastle [1].

The cores are complemented with a Matlab library [5] emulating bit-exactly the properties of the final hardware.

The library can be used in the following environments:

• Directly in Matlab M-scripts,

• C language via MEX functions,

• Simulink, via S-functions,

• and thereby in Real Time Workshop for rapid prototyping

Underlying Algorithms

In the presented Logarithmic Number System (LNS), a real number x is represented as a 31-bit signed two’s

compmenent fixed point value representing )(log
2

x  with an additional 32
nd
 bit to indicate its sign. LNS

multiplication, division and square-root can thus be implemented rapidly as integer addition, subtraction and

right-shift (and round) respectively.

Addition and subtraction of values in the LNS present a challenge. Our solution is based on these formulae:
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 are awkward transcendental functions which we must

somehow evalute. The approximation of these functions is the principal problem in LNS research. We employ an

innovative, patented solution developed by the HSLA project team under Dr. Coleman [1],[3], which yields a

drastic reduction in the size of the look-up tables required compared to those needed for conventional linear

interpolation of both functions. This is achieved by the parallel evaluation of a linear approximant and an error

correction term.

Fig. 1: Coleman's approximation method based on parallel access to 2 sets of look-up tables. The tables F

and D serve for the linear interpolation. The idea behind Coleman's method is the special (patented) selection of

the approximation intervals.  It results in an identical correction term for each of the approximation sub-

intervals. This enables parallel computation of the correction term from a single set of E and P tables and

drastic reduction of the look-up table size for 32-bit precision.

Coleman's approach [1], [3] leads to a solution which is suitable for the FPGA implementation because it avoids

the need for a barrel shifter. Implementation of the hardware equivalent of barrel shifts is area-costly and

ineffective in FPGA; that is one reason why FPGA design does not use floating point arithmetic a lot. The LNS

ALU provides one of the first hardware solutions to this problem (see Fig.1).

The idea behind Coleman's method is the special (patented) selection of the approximation intervals.  It results in

an identical correction term for each of the approximation sub-intervals. This enables parallel computation of the

correction term from a single set of E and P tables and drastic reduction of the look-up table size for 32-bit

precision.



Fig. 2: IEEE 32-bit floating-point format, LNS 32-bit format and the internal implementation of the elementary

LNS operations applied to the 32-bit integer representation of the logarithm.

The 32-bit LNS addition can be performed in time comparable to floating-point 32-bit addition without loss of

precision. It needs approximately 32k bytes of look-up table space with 32-bit word-length. Internally the LNS

ALU operates on an extended 35-bit wide data representation, enabling the final results to be rounded to within

the error bounds of 32-bit floating point. Therefore, the LNS ALU is a valid candidate for the development of the

IP Cores for the FPGA based designs, which need to operate with the range and precision of 32-bit floating point

numbers.

Internal and External Data Representation

Log data are represented in a 32-bit format. The MSB indicates the sign of the corresponding real number.

MSB=0: positive real number. MSB=1: negative real number. The remaining 31 bits hold the base-two

logarithm of the real value being represented, in two’s complement format (Fig. 2). In Matlab, the conversion

into this format could be implemented as: z=round(8388608*log2(abs(u)));

− The maximum value of a real number which can be represented is u=3.4×10
38

− The minimum value of a real number which can be represented is u=(1/3.4)×10
−38

− LNS zero is represented by special code 0x40000000.

− The result of division by zero is indicated by a NaN 0xC0000000.

Algorithms for conversion to and from the log. domain are provided. Real-time applications need these

conversion in hardware and this is done by the int2log() and log2int() Handel C and DK1 modules. These

modules support conversion of real-domain fixed-point data with up to 22 bit precision in the range (-1,1). The

conversion algorithms are designed to support up to 22-bit precision A/D and D/A devices.



Description of implemented functions

The following 32bit precision LNS operations are supported:

Matlab ANSI C Hancel C Description

lm2() logmul() lmul() Saturating multiply with full status handling (overflow, etc).

- - lm() Fast regular multiply - can execute in parallel with additions and subtractions.

ld2() logdiv() ldiv() Saturating divide with full status handling (overflow, etc).

- - ld() Fast regular divide - can execute in parallel with additions and subtractions.

lsq2() logsqrt() lsqrt() Saturating square-root with full status handling (overflow, etc).

- - lsq() Fast regular divide - can execute in parallel with additions and subtractions.

Addition and subtraction supported by non-pipelined ALU:

Matlab ANSI C Hancel C Description

la2() logadd() ladd() Saturating add with full status handling (overflow, etc).

ls2() logsub() lsub() Saturating subtract with full status handling (overflow, etc).

Add and subtract require a total of 64 kilobytes of LUT storage, organised as 4×4Kword (32-bit) SRAMs.

Addition and subtraction supported by 3-stage pipelined ALU:

Matlab ANSI C Hancel C Description

la2p() - ladd() Start of saturating add with full status handling (overflow, etc).

ls2p() - lsub() Saturating subtract with full status handling (overflow, etc).

result() - result() Read result of  3-stage pipelined saturating add, subtract.

Add and subtract require a total of 64 kilobytes of LUT storage, organised as 4×4Kword (32-bit) SRAMs.

Conversion routines:

Matlab ANSI C Hancel C Description

d2log - - Conversion from decadic to logarithmic domain – double precission format

log2d - - Conversion from logarithmic to decadic domain – double pricision format

int2log2 - int2log 22-bit precision conversion from integer to logaritmic domain (approx.)

log2int2 - log2int 22-bit precision conversion from logarithmic to integer domain (approx.)

The parallel execution capability of the first  group of operations (lm,ld,lsq) allows them to proceed concurrently

with logarithmic addition or subtraction. Since these are hardware macros, the only limit on the number of such

operations that can be executed at once is FPGA capacity.

How to use LNS routines:

In this section we will show how to use our LNS routines. Declarations and source codes for diferent

enviroments (Matlab, ANSII C, Handel C) will be presented.

EXAMPLE CODE in Matlab, using HSLA emulation library: 

for k=1:8, % la2(),lsq2(),lm2() are MEX

  z(k) = la2(a,b); % the Matlab HSLA library in C

  y(j+1)= lsq2(x(j)); % bit-exact emulation of the

  r(k) = lm2(a,b);  % In Matlab: arrays start with index 1

  j= j + 1; % In C and Handel C: arrays start from 0

  x(i) = lm2(r(k),y(j));

end;



All variables for LNS calculations (a,b.. etc.) are standard double precision Matlab variables and they had to be

converted to logartihmic domain using d2log(), log2d() routines befor. For arrays use d2logM(), log2dM()

functions. The M at the end of function name represents matrix function. In Matlab matrix mersions of additon,

subtraction, multiplication and division also exist.

Corresponding DECLARATIONS in the standard ANSI C used in floating point DSP:

float a, b, x[8], y[8], z[8], r[8];

int i, j, k;

Corresponding  CODE of the standard ANSI C used in floating point DSP: 

for(k=0;k<8;k=k+1){

  z[k] = a + b; // z[k], j[j+1] and r{k] can be

  y[j+1]= sqrt(x[j]); // exec. Indep.(can be in par)

  r[k] = a * b;      // see Handel C version

  j= j + 1; // integer operation

  x[i] = r[k] * y[j]); // x[i] needs j incremented

}

Corresponding DECLARATIONS in Handel C and the Celoxica DK1 tool:

Int 32 a,b; //(int 32...LNS)

ram int 32 x[8],y[8],z[8],r[8]; //(size=2^3)

unsigned 3 i,j,k; //relates to size 2^3

unsigned 3 zsl; //status of LNS op.

Corresponding parallel CODE for non-pipelined ALU in Handel C and DK1:

for(k=0;k<8;k=k+1){

par{ // 3 parallel threads

ladd(a,b,z[k],zsl);

y[j+1] = lsq(x[j]);

{ r[k] = lm(a,b); // sequential exec.

j = j + 1; // integer HW

x[i] = lm(r[k],y[j]);

}

    }

}

TIMING of parallel computations non-pipelined ALU:

Clock t t+1 t+2 t+3 ... t+8 t+9 t+10 t+11

ladd

lsq

lm

j++

k = 0 0 0 0 0 0* 1** 1 1

* - z[0] done, ** - next loop

FPGA Implementation Summary

Both LNS IP-cores has been tested at the clock rates up-to 53 MHz XCV2000E-6. Non-pipelined core consumes

8% and the pipelined core 11% of XCV2000E-6 slices. None of the Virtex internal block-RAM are used in both

implementations.

The look-up tables are located in the four external banks of SRAM.  Tables take 4Kwords in each of four 32bit-

wide SRAMs on the RC1000 board. The tables are DMA pre-booted via the PCI interface of the board. Each

SRAM has 512Kwords of SRAM. 508Kwords remain free for the user.



Fig. 3. 3-stage pipelined ALU. The use of MUL/DIV/SQRT can be used for execution of operations in parallel to

the ADD/SUB in stage 2 or 3 of the pipe. The example of log-to-int conversion is using the dedicated 1-cycle

macros at the cost of the additional distributed hardware.

Implemented API for Celoxica DK1 API

All implemented function for Celoxica DK1 API and their clock requirements are presented in the next table:

Cycles

Function Description Non-pipelined

ALU

Pipelined ALU

ladd(al,bl,zl,zsl) zl=al+bl; 9-12

lsub(al,bl,zl,zsl) zl=al-bl; 9-12

ladd(al,bl) pipe al+bl; - 5(*)

lsub(al,bl) pipe al-bl; - 5(*)

result(zl,zs) result from - 1

zl=ld(al,bl) zl=al/bl; 1 1

zl=lsq(al) zl=sqrt(al); 1 1

int2log(al,zl) int to log 45-60 27(**)

log2int(al,zl) log to int 45-60 27(**)

(*) result can be collected after 5+5+3 cycles

(**)27 cycles in the case of multiple conversions in parallel. See Example 1.



FPGA implementation of the 22bit precision LOG to INT conversion macro

Standard polynomial approximation is used for the conversion with the implementation outlined in the equation

(3).
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See Example 1. and Exapmle 2. for the implementation examples. Both examples provide conversion of 3

numbers (block of length 3). This is needed for the pipelined version of convrersion in Example 2. to get the

maximal performance. Input of the conversion (dLog[i]) is the LNS 32 bit value, representing the data to be

converted in the range (0,1). Output of the algorithm is the 32 bit variable dInt[i], which in lower 24bits holds the

integer equivalent. Bits [23:2] can be used to drive up to 22-bit precision D/A device.

for (i=0;i<3;i++){

  ladd(k4,lm(k5,dLog[i]) ,zl1,zs);

  ladd(k3,lm(dLog,zl1),zl2,zs);

  ladd(k2,lm(dLog,zl2),zl3,zs); //3 numbers converted in:

  ladd(k1,lm(dLog,zl3),zl4,zs); //best case :  3*5*9=135 cycles

  ladd(k0,lm(dLog,zl4),dInt[i],zs); //worst case: 3*5*12=180 cycles

}

Example 1.  Implementation of log to integer conversion of 3 length vector by the non-pipelined log ALU.

ladd(k[4],lm(k[5],dLog[i])); // 3*5+1=16 cycles

ladd(k[4],lm(k[5],dLog[i+1]));

ladd(k[4],lm(k[5],dLog[i+2]));

result(zl1,  zs1);

for (j=3;j>=0;j--){ // 4*3*5=60 cycles

  par{ladd(k[j],lm(dLog[i]  ,zl1));result(zl2,zs2);}

  par{ladd(k[j],lm(dLog[i+1],zl2));result(zl3,zs3);}

  par{ladd(k[j],lm(dLog[i+2],zl3));result(zl1,zs1);}

}

par{dInt[i]=zl1; zs[i]=zs1;} // 3 cycles

result(dInt[i+1],zs[i+1]); //3 numbers converted in:

result(dInt[i+2],zs[i+2]); // total 79 cycles

Example 2.  Implementation of  log to integer conversion of 3 length vector by the 3-stage pipelined log ALU.

The real HW macro log2int()which is part of the final API for the Celoxica DK1 core is in addition

handling the conversion of the data in the range (-1,1) at no additional precision or time cost. The corresponding

logic has been removed for the clarity. Example 2. demonstrates the use of Handel C par{} constructs, and

utilization of the pipelined ALU.



Fig. 4. Absolute precision of the log. to real domain (fixed-point) conversion algorithm. Horizontal lines indicate the

precision margins required for the support of a 22bit D/A output convertor.

Performance comparison for the log to int example

If both ALUs operate at 50MHz, data can be converted at these sampling rates:

• At least to 833kHz (worst case, corresponding to 8.3Mflop performance) for non-pipelined ALU and

• At 1.85MHz for the 3-stage pipelined ALU. This is corresponding to 18.5Mflop performance. The pipelined

ALU provides this performance only if the data can be processed in batches of at least 3 measurements.

In general, both ALUs implement the DSP or control algorithms with the 32-bit log. data type described above.

The conversion to and from the corresponding real-domain fixed-point representation is performed only for I/O.

FPGA Implementation Path

Both LNS ALU cores have been implemented in FPGA by Handel-C 2.1 and Celoxica DK1. The verrified

performance (53MHz clockfor XCV2000E-6 on RC1000 board) has been achieved by the use of the DK1 and

this path:

1. Celoxica DK1 (using the Handel C2.1 compatible code) with export to VHDL.

2. Synplify 5.3 from Synplicity to create EDIF.

3. XILINX Alliance 3.3i tools to place and route from the EDIF netlist for the FPGAs.

4. Download to FPGA  in the target platform. The Celoxica RC1000 board [11] has been used as the target

platform in our case. The board is booted and interfaced to the PC by a straightforward C or C++ application

compiled by MS VC 6.0.

Fast simulation support at the high algorithmic level in Matlab or DK1

Debugging of the complex designs (simulation time) becomes huge pronlem in the case of multi-million gate

FPGAs. It becomes specially importentant in the case of the pipelined ALU. The presented API for Matlab and

Celoxica DK1 might be one of possible solutions.



• Matlab: We provide bit-exact Matlab version (C coded DLL MEX functions) of pipelined

ladd(),lsub()  and result()  specially for the emulation of the pipelined ALU.  User can write

the floating-point like part of the algorithm in Matlab as sequential code. ladd() and result()  takes

track and care about posible deadlocks related to the ALU pipe. Example: If the user would fill the pipe

with a sequence of 4 subsequent ladd() or sub()  operations without the  result()after the 3-rd

call, deadlock would happen. This is directly reported at the Matlab level simulation. Complete add/sub

operation takes just 800 nanoseconds to execute on a 300MHz Pentium 2 PC. User is debugging at the

high level with ZERO compile time, bit-exact, and at the speed of 10-20 Million clock cycles per second

on a moderate PC.

• Celoxica DK1: Similar set of DLL function plugs has been designed for of the pipelined

ladd(),lsub()  and result() for the accelerated high level emulation of the pipelined ALU under

the Celoxica DK1 simulator. Again the deadlocks are detected and reported to the user. User is

debugging complete parallel code with all threads and parallel executions with a substantially reduced

simulation-related HandelC-to-Gates. Simulation remains bit-exact, and the speed of the ALU part is

again 10-20 Million clock cycles per second before the long final P&R step.   

Both outlined methods are relatively intuitive are straightforward to use. Simulation at the Matlab level is

typically used in the first stages of the port. Major concern is effective use of the pipelined ALU without creation

of deadlocks. DK1 based simulation covers in addition the complete parallel environment within the FPGA

coded in Handel C.

Conclusion

Both presented ALU provide efficient FPGA implementation of elementary operations (add, subtract, multiply,

divide and square root). Presented Handel C2.1 and DK1 API cover the basic foundation for creation of

advanced algorithms in hardware.

The realistic sustained (and easy to program) performance of the non-pipelined ALU is 10-15 Mflop for

XCV2000E-6 in the area of algorithms like the RLS QR as used in e.g. radar and control applications, QR-

Lattice, and Normalized Lattice. Programming of the 3-stage pipelined ALU is not as straightforward.

Depending on the algorithm one can count with the performance from 15 to 30 Mflop.

The DK1 design path was found to be a friendly, robust and high-productivity tool.

In combination with the libraries presented here, the DSP algorithm designer creates, in effect, his own

optimized VLIW-like (Very Large Instruction Word) and floating-point-like program flow, which can be source-

code-debugged and subsequently straightforwardly compiled from this high-level to the target FPGA. Using the

DK1 toolset and the HSLA libraries, rapid FPGA implementation of high performance DSP hardware can be

achieved.
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