
The use of Polynomial ToolboxTM for
MATLABTM for filter design

Jiří Fajt∗, Michael Šebek+

∗Department of Control Engineering, Faculty of Electrical Engineering,
Czech Technical University

+Centre for Applied Cybernetics, Czech Technical University

Abstract
Polynomial methods, originally developed for the design of control systems, are
increasingly utilized in other engineering areas. Polynomial methods have found
great use in signal processing and in filter design, new requirements introduced in
these fields are that complex polynomial coefficients are often required.
Polynomial Toolbox for MATLAB allows to use complex coefficients in most compu-
tational tasks, especially in solving Diophantine equations and spectral factorization.
In this paper, it will be briefly outlined how polynomial methods can be used
for filter design. It will be shown how Polynomial Toolbox for MATLAB can be
suitably used for such filter design.

1 Introduction

Polynomial methods have been widely used in control engineering since early 70s.
They are based on system description by input-output relations [1]. However, transfer
functions are not treated as functions of complex variable but as algebraic objects. A
system design then only requires algebraic operations with polynomials and polynomial
matrices, typically one has to solve algebraic polynomial equations and spectral factori-
zation. Polynomial approach enables to solve many design problems in an elegant way
and it gives an engineer good insight into the structure of a designed system.

It was later realized that advantages of polynomial approach can be utilized in other
close engineering areas such as in signal processing and in communications. An engineer
designing filters for a communication system is often given its transfer function and thus
input-output requirements.

There is no need to use complex polynomial coefficients in the control field. In com-
munication systems, it is needed to obtain information about both the amplitude and
the phase of signal. This leads to the use of so called complex envelope when processing
baseband signal. Therefore polynomials with complex coefficients must be used.

An algorithm for a scalar signal Wiener filter design based on polynomial approach
suggested in [5] will be briefly outlined in this paper. If the polynomial approach is to be
used efficiently for a filter design, a powerful simulation software for performing demanding
algebraic operations with polynomials is a must. Main focus of this paper is to demonstrate
that the Polynomial Toolbox for MATLAB [6] is such a powerful design software tool.

Remarks on notation:
Further in the text, the following notation is used:
Backward shift operator q−1, q−1s(t) = s(t−1), forward shift operator q, q s(t) = s(t+1).
Given polynomial P (q−1) = p0 + p1q

−1 + . . . + pnq
−n, conjugate polynomial is defined

P∗(q) = p∗0 + p∗1q + . . . + p∗nqn, where p∗i denotes complex conjugate of pi.
Polynomial P (q−1) is stable (Schur stable) if all zeros of P (z−1) are in |z| < 1. Note that
whenever P (q−1) is stable, all zeros of P∗(q) are in |z| > 1.

2 Filtering problem

Algorithms for design of filters, predictors and smoothers by polynomial methods
are dealt with in [2], [3], [4], [5] in detail. Algorithms concern scalar signals as well as
multivariate signals. There are several algorithms for optimal filter design, filters are
optimal in the sense of minimizing quadratic error criteria. Polynomial approach based
on the evaluation of orthogonality [5] will be shortly outlined here.

Consider a linear and discrete time system, which is stable and time invariant. The
system is driven by a vector of stationary white noise e(t), generates a stationary mea-
surement vector sequence y(t) and a vector sequence of stationary desired responses f(t)
(fig. 1) [5].

Figure 1: System description, f̂(t) is the estimate of f(t), n(t) is a variational term.

Estimator is defined

d̂(t|t + m) =
Q(q−1)
R(q−1)

y(t + m) + n(t), (1)

stationary signal n(t) represents modification of the estimate.
Optimal filter minimizes error criterion

J̄ = tr E{f(t)− d̂(t|t + m)}{f ∗(t)− d̂∗(t|t + m)}
= tr{Eε(t)ε∗(t)− Eε(t)n∗(t) − En(t)ε∗(t) + En(t)n∗(t)} (2)

Optimality (minimum J̄) is guaranteed when the error ε(t) and any admissible linear
function of the measurements n(t) are orthogonal [5].

Algorithm based on orthogonality can be divided into three steps [5].

1. Find rational transfer functions of the system represented by polynomial (matrix)
fractions. From the spectral density of y(t) perform spectral factorization.

2. Define estimation error ε(t) and variation of the estimate n(t). Express Eε(t)n∗(t) in
frequency domain using Parseval’s formula. Simplify it using spectral factorization.

3. Fulfill the orthogonality requirement Eε(t)n∗(t). We get a polynomial equation
whose solution gives us the estimator.

3 A scalar signal filter

A system is described by the following ARMA models.

y(t) =
C(q−1)
D(q−1)

e(t) + w(t) (3)

w(t) =
M(q−1)
N(q−1)

v(t)

where w(t) is measurement noise which does not necessarily have to be white, e(t), v(t)
are white and have zero mean, C(q−1), D(q−1),M(q−1), N(q−1) are stable.

The measurements {y(t)} can be described by the innovation model

y(t) =
β(q−1)

D(q−1)N(q−1)
(
√

σnη(t)) (4)

where σn is the variance of innovation sequence, β(q−1) is a monic and stable polynomial.
A spectral factorization equation for β is obtained by setting spectral densities from

(3) and (4) equal.

rβ(q−1)β∗(q) = C(q−1)C∗(q)N(q−1)N∗(q) + ρM(q−1)M∗(q)D(q−1)D∗(q) (5)

where r = ση

σe
, ρ = σv

σe
and β(z−1) is stable.

It is derived in [5] that R(q−1) = β(q−1) and for Q(q−1) = Q1(q−1)N(q−1) and any
polynomial L∗(q), a unique solution of the linear polynomial equation [5]

q−mC(q−1)C∗(q)N∗(q) = rβ∗(q)Q1(q−1) + qD(q−1)L∗(q) (6)

determines the solution for the searched estimator

d̂(t|t + m) =
Q1(q−1)N(q−1)

β(q−1)
y(t|t + m) (7)

Solution of (6) is unique because Q(q−1) must be causal, ie. it may not contain any terms
with positive powers of q, and L∗(q) should not contain any terms with powers of q−1.
Solvability conditions of Diophantine equation (6) are thoroughly examined in [2], [3], [4],
[5].

4 Solution using Polynomial Toolbox

It will be demonstrated in this section how a filter for scalar system can be designed
using Polynomial Toolbox for MATLAB1. Procedure in Matlab exactly follows the algo-
rithm described in previous section. However, there are several problems to watch out for
and they will be stressed herein.

Variable z−1 is used as a function variable instead of q−1 because q−1 is not fully
supported in the toolbox2. ARMA models for (3) and r, ρ,m are assumed to be known3.
Chosen models contain polynomials with complex coefficients.

>> r = 1/2; rho = 1/10; m = -1;

>> C = 1 + (-1-0.5i)*z^-1 + (0.3+0.5i)*z^-2

>> D = 1 + (-1.3+0.2i)*z^-1 + (0.5+0.2i)*z^-2 + (-0.1 - 0.2i)*z^-3

>> M = 1 + (-0.5+0.1i)*z^-1 + (0.1-0.1i)*z^-2

>> N = 1 + (-0.4+0.2i)*z^-1 + (0.2+0.1i)*z^-2

Function spf computing spectral factorization returns its result as a function of z but
we need it as a function of z−1. Therefore β(z−1) can be calculated as follows.

>> beta = spf(1/r*C*C’*N*N’+rho/r*M*M’*D*D’)

beta =

-0.0039-0.0013i + (0.032+0.18i)z + (-0.56-0.46i)z^2 +

+ (1.5+0.76i)z^3 + (-2.2-0.32i)z^4 + (1.5+0i)z^5

>> beta = beta * z^(-deg(beta))

beta =

(-0.0039-0.0013i)z^-5 + (0.032+0.18i)z^-4 + (-0.56-0.46i)z^-3 +

+ (1.5+0.76i)z^-2 + (-2.2-0.32i)z^-1 + 1.5+0i

>> isstable(beta)

ans = 1

The next step is to solve Diophantine equation (6). Unfortunately the Polynomial
Toolbox cannot solve polynomial equations with double sided polynomials. Solution of
equation (6) can be easily converted to an equation of single sided polynomials, both sides
get multiplied by z−max(n) where max(n) is the highest positive power of z. Polynomial
equation AX +BY = C has generally an infinite number of solutions given by a particular
solution X0, Y0 and polynomials R,S such that for any polynomial T holds that X =
X0 + RT and Y = Y0 + ST are solutions of the equation. The unique solution4 fulfilling
conditions of causality and optimality [5] is found further.

>> eqC = z^-m*C*C’*N’;

>> eqA = r*beta’;

1This example was created using a pre-release of Polynomial Toolbox version 3. Some amendments
would have to be made in order to use the example in the commercially available version 2.5. Versions
2.5 and older do not support double sided polynomials. The solution using version 3 was chosen because
it is more illustrative.

2It is not needed as z−1 can be used instead. However, it was formally better to use q−1 in the
algorithm description above.

3These models were arbitrarily chosen for the sake of this simulation. They consist of stable polynomials
with complex coefficients. These models may not have any real-world counterpart.

4A user defined function uniqsol was used, it is not a part of the toolbox.

>> eqB = z*D;

>> maxn = max([deg(eqA), deg(eqB), deg(eqC)]);

>> eqC = z^-maxn*eqC; eqB = z^-maxn*eqB; eqA = z^-maxn*eqA;

>> [Q0, L0, R, S] = axbyc(eqA, eqB, eqC)

Q0 =

(0+9.2e-009i)z^-1 + (-25+58i)z^-2 + (2e+003+2e+003i)z^-3 +

(-3.1e+003-2.3e+003i)z^-4 + (5.9e+002+1.5e+003i)z^-5 + (2.3e+002-6.1e+002i)z^-6

L0 =

-2.2e+002+1.7e+002i + (1.1e+003+78i)z^-1 + (-2.3e+003-7.7e+002i)z^-2 +

(2.5e+003+1.9e+003i)z^-3 + (-1.5e+003-1.6e+003i)z^-4

R =

(-0.19+0.37i)z^-4 + (0.17-0.52i)z^-5 + (-0.17+0.15i)z^-6 + (0.094+0i)z^-7

S =

-0.00012+0.00085i + (-0.031-0.023i)z^-1 + (0.034+0.15i)z^-2 +

(-0.00085-0.35i)z^-3 + (-0.14+0.44i)z^-4 + (0.14-0.29i)z^-5

>> uniqsol

T =

(-2.4e+003+6.6e+003i)z + (-1.5e+002+9.9i)z^2 + (-1.5-3i)z^3 + (0.089-0.15i)z^4

>> Q1 = Q0 + R*T

Q1 =

(0.39+0.65i)z^-3 + (-1.4-0.59i)z^-2 + (1.3-0.096i)z^-1 + 0.041+0.062i

>> L = L0 + S*T

L =

0.041+0.0071i + (-0.048-0.014i)z + (0.016+0.0018i)z^2 +

(-0.0035+0.0017i)z^3 + (0.00012+9.5e-005i)z^4

A final result for the estimator is obtained by substituting intermediate results into
(7).

>> estimator = Q1 * N / beta;

estimator.numerator =

(0.013+0.17i)z^-5 + (-0.5-0.44i)z^-4 + (1.3+0.73i)z^-3 + (-1.9-0.27i)z^-2 +

+ (1.3-0.11i)z^-1 + 0.041+0.062i

estimator.denominator =

(-0.0039-0.0013i)z^-5 + (0.032+0.18i)z^-4 + (-0.56-0.46i)z^-3 +

+ (1.5+0.76i)z^-2 + (-2.2-0.32i)z^-1 + 1.5+0i

5 Conclusion

Polynomial methods have been employed in signal processing and in designing filters.
These applications require complex polynomial coefficients. An algorithm for a design of a
Wiener filter for a scalar signal was outlined here. It was demonstrated that the Polynomial
Toolbox for Matlab is a good simulation package which can handle computations with
complex polynomials. A numerical example of a Wiener filter design was performed in this
article. It is obvious that once ARMA system models are known, filter design becomes
very straightforward.

Acknowledgments

This work was supported by the Ministry of Education of the Czech Republic under
Project LN00B096.

References

[1] Kučera V.: Analysis and Design of Discrete Linear Control Systems, Academia,
Prague, 1991.

[2] Sternad M., Ahlen A.: H-2 Design of Model-Based Nominal and Robust Discrete
Time Filters. Chapter 5 in M Grimble and V Kučera, eds: A Polynomial Approach
to H-2 and H-infinity Robust Control Design. pp 171-222, Springer-Verlag, London,
1996.

[3] Ahlen A., Sternad M.: Derivation and Design of Wiener Filters using Polynomial
Equations. In C T Leondes, ed: Control and Dynamic Systems, Vol 64:Stochastic
Techniques in Digital Signal Processing Systems. pp 353-418, Academic Press, New
York, NY, 1994.

[4] Ahlen A., Sternad M.: Optimal Filtering Problems. Chapter 5 in K Hunt, ed: Po-
lynomial Methods in Optimal Control and Filtering, pp 120-161, Control Engineering
Series, Peter Peregrinus, London, 1993.

[5] Ahlen A., Sternad M.: Wiener Filter Design Using Polynomial Equations. IEEE
Transactions on Signal Processing, vol 39, pp 2387-2399, November 1991.

[6] Kwakernak H., Šebek M.: PolyX Home Page.
http://www.polyx.cz, http://www.polyx.com

[7] Hromčík M., Ježek J., Šebek M.: New Algorithm for Spectral Factorization and
Its Practical Application. Proceedings of the European Control Conference 2001,
Porto, Portugal.

[8] Hromčík M., Ježek J., Šebek M.: Complex Polynomial in Communications:
Motivation, Algorithms, Software. Konference Řízení procesů 2002, Dlouhé Stráně,
červen 2002.

[9] Hromčík M., Ježek J., Šebek M., Hurák Z.: Polynomial Spectral Factorization
with Complex Coefficients. Conference IFAC World Congress, Barcelona, July 2002.

[10] Hromčík M., Šebek M., Ježek J.: Polynomial Toolbox for MATLAB and Com-
plex Polynomials in Communications. Sborník konference MATLAB 2001, pp. 94-
102, Praha, říjen 2001.

