
USING THE SYSTEM-C LIBRARY
FOR BIT–TRUE SIMULATIONS IN MATLAB

Jan Schier

Institute of Information Theory and Automation
Academy of Sciences of the Czech Republic

Abstract

In the paper, the possibilities of bit-true simulations in Matlab/Simulink are discussed, with focus on integrating
the SystemC simulation language into the Matlab environment.

1 Introduction

Matlab/Simulink is well known for its flexibility, rich set of features and the rapid prototyping capabilities. With a
number of high-quality toolboxes, it has gained popularity in both scientific and engineering communities. In this
paper, we will consider its use for design of the DSP applications, namely for bit-true simulations. We will focus
on integrating the Matlab environment with the SystemC design language.

1.1 DSP application design flow

For a typical DSP application, the design steps are shown in Fig. 1. Let us give some comments on each of them:

Testing in
embedded target

Algorithm
design

Matlab
Simulation

performance
Fixed-point

Target architecture
simulation

Figure 1: Design flow of a DSP application

1. Algorithm design– theoretical derivation of the algorithm. In this phase, decisions are taken on the “math-
ematical architecture” of the application. This step includes choosing an algorithm from existing ones or
deriving a new one, theoretical considerations on the complexity, convergence, modularity and other prop-
erties of the algorithm

2. Matlab/Simulink implementation– very often, the theoretical analysis cannot answer all questions we ask
about the algorithm properties, or an exact analysis would be too costly. The reasons may be complex
character of the data to be processed, nonlinearities included in the signal path, etc.

For this reason, and also as a certain “engineers proof-of-concept”, an implementation in a rapid proto-
typing environment (in our case, in a form of a Matlab program or Simulink model) is used. The Matlab
environment is “ideal” in a sense – the computations are implemented in a double-precision floating-point
arithmetics, but it already gives good insight on the function of algorithm and, thanks to the number of
available toolboxes, it saves lot of programming work.

3. Fixed-point simulation– the typical target environment for the DSP applications is an embedded system,
using either a DSP processor, or an FPGA/ASIC chip. In the case of FPGA or ASIC, it is (except the high-
end FPGA chips) costly to implement the floating-point arithmetic and integer/fixed-point arithmetic must
be used instead. This introduces new source of errors (quantization errors, overflows or saturations). To
investigate the influence of these effects on the algorithm performance, a bit-true fixed-point simulation is
used. In Simulink, this can be performed using the Fixed-point Blockset.

4. Target architecture simulation– in this phase, the implementation of the application in the target environment
is simulated. This may include also optimization of the target architecture. The simulation environment will
usually give an information on the real-time behaviour of our application.

5. Testing in embedded target– the final step, when the application is run in the real system, instead of the
simulation environment.

1.2 Gap between algorithm design and implementation

Traditionally, the system engineer has been using the Matlab/Simulink environment and/or pieces of C/C++ code
to verify the concepts and algorithm at the system level, while the hardware implementation was done using VHDL
or Verilog languages. Hence, the algorithm had to be manually converted in order to be ported from the prototyping
environment to the target system. This approach has several drawbacks:

• manual conversion from one language to another is tedious and error prone,

• once the conversion has been performed, the necessary changes are made in the version coded in the
hardware-description language, while the original model quickly becomes obsolete,

• the tests that have been created to validate the original model have to be converted as well.

In the recent time, there have been multiple efforts to avoid this problem and to develop new design methodol-
ogy using either automated transition from one testing environment to another or an integrated design system.

2 Linking the design environments

For the DSP-targeted development in Simulink, there are two basic tools in Simulink, theFixed-point blocksetand
theReal-Time Workshop. The purpose of the first one is to add bit-true simulation capabilities to Simulink, while
the second one is used to generate C-code from the Simulink models. Both these tools are targeted towards the
DSP code development.

To provide link to the vendor-specific tools, there are two so calledembedded targets– one for Motorola
MPC555 microcontroller and one for the TI C6000 DSP.

In relation with the FPGA-oriented development, theXilinx System Generator for DSPcan be mentioned – this
tool addresses the fixed-point testing and partly the target architecture simulation. It also provides the translation
to the VHDL hardware-description language.

The design flows for these tools are summarized in Figure 2.

3 System C simulation language

A possible alternative for the FPGA- and ASIC-oriented prototyping is the SystemC language.
It is a C++ class library that can be used to create bit-exact and cycle accurate models of algorithms, hardware

architectures and system-level designs. The library provides constructs to model hardware timing, concurrency
and reactive behaviour.

Fixed-point
blockset

Testing in
embedded target

Real-Time
Workshop

Embedded
targets

performance
Fixed-point

Target architecture
simulation

Algorithm
design

Simulink
Simulation

(a) DSP tools

Testing in
embedded target

Xilinx
System Generator
for DSP

Xilinx
back-end
tools

performance
Fixed-point

Target architecture
simulation

Algorithm
design

Simulink
Simulation

VHDL code

(b) FPGA tools

Figure 2: Simulink extensions for the DSP and FPGA development

At the simulation level, the library can be used with the standard C++ development tools, while there also exist
(proprietary) tools for hardware synthesis. Hence, it is possible to go from the algorithmic to the implementation
level using one gradually refined description.

Since the library is open-source and not bound to one particular platform, it is gaining popularity among the
developers. The development of the language is steered by the Open SystemC Initiative[1].

3.1 Features of the language

Let us show some of the basic features of the language on two simple code snippets – one showing the typical
structure of a SystemCmodule(see Figure 4), second showing the structure of themain function and the “glue”
code (see Figure 3).

The library contains constructs for creating modular hardware description. In the examples shown in Figure 3,
we can see simple definitions of ports, description of module sensitivity to signals like clock, timeout or strobe
signal, etc. The modules are connected using “wires” – signals. Thesc trace() command given in the first
example is a wave-dump command; thesc start() command is used to start simulation and to run it for a
certain period. The simulation can be also initialized and single-stepped by separate commands.

4 Using Matlab as a testbench for SystemC

This is the simplest – case of linking Matlab with SystemC. In general, a testbench is used to provide stimuli to the
tested design and to check results generated by the design.

Matlab, with its rich set of signal generators and data visualization tools is ideal for both generating the test
signals and for post-processing the simulation results. We shall show on a simple example that a SystemC-based
simulation can be very easily plugged into Matlab in a form of a Mex file (Figure 5).

/ / Include signal and module definitions
i n c l u d e ” p a c k e t . h ”
i n c l u d e ” t r a n s m i t . h ”
i n c l u d e ” r e c e i v e r . h ”

/ / Definition of main
i n t sc ma in (i n t argc , char ∗ argv []) {

/ / Definition of “wires” – signals
s c s i g n a l<p a c k e t t y p e > PACKET;
s c s i g n a l<bool > TIMEOUT , START;

s c c l o c k CLOCK(” c l o c k ” , 2 0) ; / / clock

/ / Module instantiation . . .
t r a n s m i t t 1 (” t r a n s m i t ”) ;
/ / . . . and wiring
t 1 . t i m e o u t (TIMEOUT) ;
t 1 . t p a c k o u t (PACKET) ;
t 1 . s t a r t t i m e r (START) ;
t 1 . c l o c k (CLOCK) ;

r e c e i v e r r1 (” r e c e i v e r ”) ;
r1 . r p a c k i n (PACKET) ;
r1 . r c l k (CLOCK) ;

/ / Tracing:
s c t r a c e (t f , PACKET1 , ” packe t1 ”) ;
/ / Simulation length
s c s t a r t (1 0 0 0 0) ;
re turn (0) ;

}

Figure 3: The structure of main

/ / Module: “container” for other definitions
SCMODULE (module name) {

/ / Port declarations
s c i n <bool > p o r t 1 ; / / input port
sc ou t <i n t > p o r t 2 ; / / output port
sc i n ou t <bool > p o r t 3 ; / / input/output port
/ / Local variables
i n t framenum ;
/ / Method declarations
vo id method1 () ;
/ / Constructor
SC CTOR (module name) {

SCMETHOD (method1) ; / / Method Process
/ / Sensitivity to trigger signals, clock, ...
s e n s i t i v e p o s << c l o c k ; / / Sensitive to the pos. edge of timeout

}
} ;

Figure 4: SystemC module description

Results
Checking

Stimuli
Device
Under
Test

General testbench environment

Results
Checking

Stimuli
Device
Under
Test

Matlab

Mex

Testbench using Matlab and SystemC-based mex

Figure 5: Typical testbench environment

4.1 Replacingsc main by the mex-function interface

The usual entry point for the SystemC-based simulation is thesc main() function (see Figure 3). In order to
plug the simulation as a mex-function into Matlab, this has to be replaced by the standard mex-header (let us recall
that the mex-function uses themain() function contained in Matlab self). Looking into the SystemC source code,
it was possible to find thatsc main() function is called from a standardmain() function, as defined in the
sc main.cpp file (see code snippet in Figure 6). It is straightforward to replace this call by the mex header.

i n t main (i n t argc , char ∗ argv [])
{

i n t s t a t u s = 0 ;
. . .
s t a t u s = scma in (argc , a rgv) ;
. . .
re turn s t a t u s ;

}

Figure 6:sc main utilisation in SystemC

4.2 Using the SystemC library in a mex-function

As described in the Matlab documentation, it is possible to link also a C++ based functions into Matlab/Simulink.
In this case, the C++ code has to be wrapped by the following code in order to use C-style function calls:

ex te rn ’ ’C ’ ’ {
. . .
code
. . .
}

In the case of mex-functions, this wrapper is already defined in themex.h header file; in the case of S-functions,
we have to take care of wrapping.

In Figure 7, we give an example showing implementation of a sum of two 4-bit integers implemented using the
data types from the SystemC library. The purpose of this example was only to verify that there will be no conflicts
between mex and SystemC headers and libraries when compiling the code, and that the SystemC data type can be
used in a mex-function.

The code in Figure 7 is the mex-function self. The function arguments from Matlab are assigned to the 4-bit
signed integer variablesxd andyd , and the result of sum is stored in a 4-bit variablezd . Hence, an overflow is
possible and will be demonstrated in the encapsulating m-script.

Thecompat.h header file contains the following definitions, necessary for compatibility:

d e f i n e i 386
undef GNUC
undef u i n t 6 4 t o d o u b l e (u)

The code in Figure 8 represents a very simple test-bench. First, two vectors are defined, one containing a
constant, the other containing one period of a sinusoid. Then, the mex-function is called in a loop, and finally, the
input and output data are plotted. These plots are given in Figure 9.

i n c l u d e < i o s t r e a m . h>

i n c l u d e ”mex . h ”
i n c l u d e ” m a t r i x . h ”
i n c l u d e ” compat . h ”
i n c l u d e ” sys temc . h ”

s c i n t <4> i n t s u m (s c i n t <4> x , s c i n t <4> y)
{

re turn x+y ;
} ;

vo id mexFunct ion (i n t n lhs , mxArray ∗ p l h s [] ,
i n t nrhs , cons t mxArray ∗ p rhs [])

{

double ∗x , ∗ y , ∗ z ;
s c i n t <4> xd , yd , zd ;

x = (double ∗) mxGetPr (p rhs [0]) ;
y = (double ∗) mxGetPr (p rhs [1]) ;

p l h s [0] = mxCrea teSca la rDoub le (0) ;
z = (double ∗) mxGetPr (p l h s [0]) ;

xd = ∗ x ;
yd = ∗ y ;

zd = i n t s u m (xd , yd) ;
∗z = zd ;
re turn ;

}

Figure 7: Functionsc sum.cpp

5 Conclusions

We have discussed the possibility of using the SystemC library for bit-true simulations in Matlab. The viability of
the approach has been demonstrated on a simple example.

x=4∗ ones (1 , 2 0) ;
y=5∗ s i n ((1 : 2 0)∗2∗ p i / 2 0) ;

f o r i =1:20
z (i)= sc sum (x (i) , y (i)) ;
end

x a x i s = 1 : 2 0 ;

f i g u r e (1) ;
p l o t (x a x i s , x , ’ b−−’, x a x i s , y , ’ g− ’) ;
t i t l e (’ I npu t ’) ;

f i g u r e (2) ;
p l o t (z) ;
t i t l e (’ Output ’) ;

Figure 8: m-script testbench for thesc sum function

In order to exploit the full strength of SystemC, many problems have yet to be considered: for example linking
the SystemC into the S-functions, automatic generation of a synthesisable SystemC code from a Simulink model
containing such functions (probably using the Real-Time workshop with appropriate TLC definitions).

6 References

[1] Available from the Open SystemC Initiative (URL: http://www.systemc.org).

[2] Xilinx Inc. ‘Xilinx System Generator’
(Available online: http://www.xilinx.com/xlnx/xilprodcatproduct.jsp?title=systemgenerator).

7 Acknowledgements

This work was supported by the Ministry of Education of the Czech Republic under Project LN00B096.

8 Contact

Department of Signal Processing

Institute of Information Theory and Automation
Academy of Sciences of the Czech Republic
Pod vod́arenskou v̌ež́ı 4
182 08, Prague 8, Czech Republic

E-mail: schier@utia.cas.cz

URL: http://www.utia.cas.cz/ZS

http://www.systemc.org
http://www.xilinx.com/xlnx/xilprotect unhbox voidb@x kern .06emvbox {hrule width.3em}prodcatprotect unhbox voidb@x kern .06emvbox {hrule width.3em}product.jsp?title=systemprotect unhbox voidb@x kern .06emvbox {hrule width.3em}generator
http://www.utia.cas.cz/ZS

Figure 9: Input and output data

	Introduction
	DSP application design flow
	Gap between algorithm design and implementation

	Linking the design environments
	System C simulation language
	Features of the language

	Using Matlab as a testbench for SystemC
	Replacing sc_main by the mex-function interface
	Using the SystemC library in a mex-function

	Conclusions
	References
	Acknowledgements
	Contact

